Artificial intelligence: Financial management under pressure of transformative technology

Authors

DOI:

https://doi.org/10.24136/eq.3394

Downloads

Download data is not yet available.

References

Adelakun, B. O. (2023). AI-driven financial forecasting: Innovations and implications for accounting practices. International Journal of Advanced Economics, 5(9), 323–338. DOI: https://doi.org/10.51594/ijae.v5i9.1231
View in Google Scholar

Afroogh, S., Akbari, A., Malone, E., Kargar, M., & Alambeigi, H. (2024). Trust in AI: Progress, chanllenges, and future directions. Humanities & Social Sciences Communications, 11, 1568. DOI: https://doi.org/10.1057/s41599-024-04044-8
View in Google Scholar

Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2023). Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges. Applied Sciences, 13(12), 7082. DOI: https://doi.org/10.3390/app13127082
View in Google Scholar

Bilal, M., Zhang, Y., Cai, S., Akram, U., & Halibas, A. (2024). Artificial intelligence is the magic wand making customer-centric a reality! An investigation into the relationship between consumer purchase intention and consumer engagement through affective attachment. Journal of Retailing and Consumer Services, 77, 103674. DOI: https://doi.org/10.1016/j.jretconser.2023.103674
View in Google Scholar

Chen, Y., Prentice, C., Weaven S., & Hisao, A. (2022). The influence of customer trust and artificial intelligence on customer engagement and loyalty – The case of the home-sharing industry. Frontiers in Psychology, 13, 912339. DOI: https://doi.org/10.3389/fpsyg.2022.912339
View in Google Scholar

Cramarenco, R. E., Burcă-Voicu, M. I., & Dabija, D. C. (2023). The impact of artificial intelligence (AI) on employees’ skills and well-being in global labor markets: A systematic review. Oeconomia Copernicana, 14(3), 731–767. DOI: https://doi.org/10.24136/oc.2023.022
View in Google Scholar

Dávid, L. D., & Dadkhah, M. (2023). Artificial intelligence in the tourism sector: Its sustainability and innovation potential. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(3), 609–613. DOI: https://doi.org/10.24136/eq.2023.019
View in Google Scholar

Eziefule, A. O., Adelakun, B. O., Okoye, I. N., & Attieku, J. S. (2022). The role of AI in automating routine accounting tasks: Efficiency gains and workforce implications. European Journal of Accounting, Auditing and Finance Research, 10(12), 109–134.
View in Google Scholar

Ferrara, E. (2024). Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci, 6(1), 3. DOI: https://doi.org/10.3390/sci6010003
View in Google Scholar

Filippi, E., Banno, M., & Trento, S. (2023). Automation technologies and their impact on employment: A review, synthesis and future research agenda. Technological Forecasting and Social Change, 191, 122448. DOI: https://doi.org/10.1016/j.techfore.2023.122448
View in Google Scholar

Frajtova Michalikova, K. (2023). The impact of the Internet of Things on the manufacturing industry using the TOPSIS method. Ekonomicko-manazerske spektrum, 17(1), 14–21. DOI: https://doi.org/10.26552/ems.2023.1.14-21
View in Google Scholar

Dabija, D. C., & Vătămănescu, E.-M. (2023). Artificial intelligence: The future is already here. Oeconomia Copernicana, 14(4), 1053–1056. DOI: https://doi.org/10.24136/oc.2023.031
View in Google Scholar

David, A., Yigitcanlar, T., Desouza, K., Li, R. Y. M., Cheong, P. H., Mehmood, R., & Corchado, J. (2024). Understanding local government responsible AI strategy: An international municipal policy document analysis. Cities, 155, 105502. DOI: https://doi.org/10.1016/j.cities.2024.105502
View in Google Scholar

Diaz-Rodriguez, N., Ser, J. D., Coeckelbergh, M., de Prado, M. L., Herrera-Viedma, E., & Herrera, F. (2023). Connecting the dots in trustworthy artificial intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Information Fusion, 99, 101896. DOI: https://doi.org/10.1016/j.inffus.2023.101896
View in Google Scholar

Dihan M. S., Akash, A. I., Tasneem, Z., Das, P., Das, S. K., Islam, M. R., Islam, M. M., Badal, F. R., Ali, M. F., Ahamed, M. H., Abhi, A. H., Sarker, S. K., & Hasan, M. M. (2024). Digital twin: Data exploration, architecture, implementation and future. Heliyon, 10(5), e26503. DOI: https://doi.org/10.1016/j.heliyon.2024.e26503
View in Google Scholar

Durica, M., Frnda, J., & Svabova, L. (2023). Artificial neural network and decision tree-based modelling of non-prosperity of companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 1105–1131. DOI: https://doi.org/10.24136/eq.2023.035
View in Google Scholar

Hidayat, M., Defitri, S. Y., & Hilman, H. (2024). The impact of artificial intelligence (AI) on financial management. Management Studies and Business Journal, 1(1), 123–129. DOI: https://doi.org/10.62207/s298rx18
View in Google Scholar

Kaczorowska-Spychalska, D., Kotula, N., Mazurek, G., & Sułkowski, Łukasz. (2024). Generative AI as source of change of knowledge management paradigm. Human Technology, 20(1), 131–154. DOI: https://doi.org/10.14254/1795-6889.2024.20-1.7
View in Google Scholar

Kalogiannidis, S., Kalfas, D., Papaevangelou, O., Giannarakis, G., & Chatzitheodoridis, F. (2024). The role of artificial intelligence technology in predictive risk assessment for business continuity: A case study of Greece. Risks, 12(2), 19. DOI: https://doi.org/10.3390/risks12020019
View in Google Scholar

Kumar, V., Ashraf, A. R., & Nadeem, W. (2024). AI-powered marketing: What, where, and how? International Journal of Information Management, 77, 102783. DOI: https://doi.org/10.1016/j.ijinfomgt.2024.102783
View in Google Scholar

Kureljusic, M., & Karger, E. (2023). Forecasting in financial accounting with artificial intelligence – A systematic literature review and future research agenda. Journal of Applied Accounting Research, 25(1), 81–104. DOI: https://doi.org/10.1108/JAAR-06-2022-0146
View in Google Scholar

Lazaroiu, G., Androniceanu, A., Grecu, I., Grecu, G., & Neguriță, O. (2022). Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing. Oeconomia Copernicana, 13(4), 1047–1080. DOI: https://doi.org/10.24136/oc.2022.030
View in Google Scholar

Lazaroiu, G., & Rogalska, E. (2023). How generative artificial intelligence technologies shape partial job displacement and labor productivity growth. Oeconomia Copernicana, 14(3), 703–706. DOI: https://doi.org/10.24136/oc.2023.020
View in Google Scholar

Miller, G. J. (2022). Stakeholder roles in artificial intelligence projects. Project Leadership and Society, 3, 100068. DOI: https://doi.org/10.1016/j.plas.2022.100068
View in Google Scholar

Nugroho, H. (2023). A review: Data quality problem in predictive analytics. International Journal of Applied Information Technology, 7(2), 79–91. DOI: https://doi.org/10.25124/ijait.v7i02.5980
View in Google Scholar

Ozturk, O. (2024). The impact of AI on international trade: Opportunities and challenges. Economies, 12(11), 298. DOI: https://doi.org/10.3390/economies12110298
View in Google Scholar

Patrício, L., Varela, L., & Silveira, Z. (2024). Integration of artificial intelligence and robotic process automation: Literature review and proposal for a sustainable model. Applied Sciences, 14(21), 9648. DOI: https://doi.org/10.3390/app14219648
View in Google Scholar

Pattnaik, D., Ray, S., & Raman, R. (2024). Applications of artificial intelligence and machine learning in the financial services industry: A bibliometric review. Heliyon, 10(1), e23492. DOI: https://doi.org/10.1016/j.heliyon.2023.e23492
View in Google Scholar

Perifanis, N. A., & Kitsios, F. (2023). Investigating the influence of artificial intelligence on business value in the digital era of strategy: A literature review. Information, 14(2), 85. DOI: https://doi.org/10.3390/info14020085
View in Google Scholar

Piotrowski, D., & Orzeszko, W. (2023). Artificial intelligence and customers’ intention to use robo-advisory in banking services. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 967–1007. DOI: https://doi.org/10.24136/eq.2023.031
View in Google Scholar

Rashid, A. B., & Kausik, M. D. A. K. (2024). AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Advances, 7, 100277. DOI: https://doi.org/10.1016/j.hybadv.2024.100277
View in Google Scholar

Saeed, W., Omlin, C. (2023). Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowledge-Based Systems, 263, 110273. DOI: https://doi.org/10.1016/j.knosys.2023.110273
View in Google Scholar

Seniutis, M., Gružauskas, V., Lileikiene, A., & Navickas, V. (2024). Conceptual framework for ethical artificial intelligence development in social services sector. Human Technology, 20(1), 6–24. DOI: https://doi.org/10.14254/1795-6889.2024.20-1.1
View in Google Scholar

Soori, M., Jough, F. K. G., Dastres, R., & Arezoo, B. (2024). AI-based decision support systems in Industry 4.0, A review. Journal of Economy and Technology. DOI: https://doi.org/10.1016/j.ject.2024.08.005
View in Google Scholar

Spreitzenbarth, J. M., Bode, C., & Stuckenschmidt, H. (2024). Artificial intelligence and machine learning in purchasing and supply management: A mixed-methods review of the state-of-the-art in literature and practice. Journal of Purchasing and Supply Management, 30(1), 100896. DOI: https://doi.org/10.1016/j.pursup.2024.100896
View in Google Scholar

Sundaram, A., Subramaniam, H., Ab Hamid, S. H., Mohamad Nor, A. (2024). An adaptive data-driven architecture for mental health care applications. PeerJ, 12, e17133. DOI: https://doi.org/10.7717/peerj.17133
View in Google Scholar

Taye, M. M. (2023). Understanding of machine learning with deep learning: Architectures, workflow, applications and future directions. Computers, 12(5), 91. DOI: https://doi.org/10.3390/computers12050091
View in Google Scholar

Turek, J., Ocicka, B., Rogowski, W., & Jefmański, B. (2023). The role of Industry 4.0 technologies in driving the financial importance of sustainability risk management. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 1009–1044. DOI: https://doi.org/10.24136/eq.2023.032
View in Google Scholar

Valaskova, K., Nagy, M., & Grecu, G. (2024). Digital twin simulation modeling, artificial intelligence-based Internet of Manufacturing Things systems, and virtual machine and cognitive computing algorithms in the Industry 4.0-based Slovak labor market. Oeconomia Copernicana, 15(1), 95–143. DOI: https://doi.org/10.24136/oc.2814
View in Google Scholar

Vasenska, I. P. (2024). Economic implications of deep machine learning for tourism time series forecasting. Ekonomicko-manazerske spektrum, 18(1), 90–101.
View in Google Scholar

Walter, Y. (2024). Managing the race to the moon: Global policy and governance in artificial intelligence regulation—A contemporary overview and an analysis of socioeconomic consequences. Discover Artificial Intelligence, 14. DOI: https://doi.org/10.1007/s44163-024-00109-4
View in Google Scholar

Wang, X., Lin, X., & Shao, B. (2022). How does artificial intelligence create business agility? Evidence from chatbots. International Journal of Information Management, 66, 102535. DOI: https://doi.org/10.1016/j.ijinfomgt.2022.102535
View in Google Scholar

Downloads

Published

30-12-2024

Issue

Section

Editorial

How to Cite

Balcerzak, A. P., & Valaskova, K. (2024). Artificial intelligence: Financial management under pressure of transformative technology. Equilibrium. Quarterly Journal of Economics and Economic Policy, 19(4), 1127-1137. https://doi.org/10.24136/eq.3394