Generative artificial intelligence of things systems, multisensory immersive extended reality technologies, and algorithmic big data simulation and modelling tools in digital twin industrial metaverse

Authors

DOI:

https://doi.org/10.24136/eq.3108

Keywords:

generative artificial intelligence of things, multisensory immersive extended reality, big data, digital twin, industrial metaverse

Abstract

Research background: Multi-modal synthetic data fusion and analysis, simulation and modelling technologies, and virtual environmental and location sensors shape the industrial metaverse. Visual digital twins, smart manufacturing and sensory data mining techniques, 3D digital twin simulation modelling and predictive maintenance tools, big data and mobile location analytics, and cloud-connected and spatial computing devices further immersive virtual spaces, decentralized 3D digital worlds, synthetic reality spaces, and the industrial metaverse.

Purpose of the article: We aim to show that big data computing and extended cognitive systems, 3D computer vision-based production and cognitive neuro-engineering technologies, and synthetic data interoperability improve artificial intelligence-based digital twin industrial metaverse and hyper-immersive simulated environments. Geolocation data mining and tracking tools, image processing computational and robot motion algorithms, and digital twin and virtual immersive technologies shape the economic and business management of extended reality environments and the industrial metaverse.

Methods: Quality tools: AMSTAR, BIBOT, CASP, Catchii, R package and Shiny app citationchaser, DistillerSR, JBI SUMARI, Litstream, Nested Knowledge, Rayyan, and Systematic Review Accelerator. Search period: April 2024. Search terms: “digital twin industrial metaverse” + “artificial Intelligence of Things systems”, “multisensory immersive extended reality technologies”, and “algorithmic big data simulation and modelling tools”. Selected sources: 114 out of 336. Published research inspected: 2022–2024. PRISMA was the reporting quality assessment tool. Dimensions and VOSviewer were deployed as data visualization tools.

Findings & value added: Simulated augmented reality and multi-sensory tracking technologies, explainable artificial intelligence-based decision support and cloud-based robotic cooperation systems, and ambient intelligence and deep learning-based predictive analytics modelling tools are instrumental in augmented reality environments and in the industrial metaverse. The economic and business management of the industrial metaverse necessitates connected enterprise production and big data computing systems, simulation and modelling technologies, and virtual reality-embedded digital twins.

Downloads

Download data is not yet available.

References

Agarwal, A., & Alathur, S. (2023). Metaverse revolution and the digital transformation: Intersectional analysis of Industry 5.0. Transforming Government: People, Process and Policy, 17, 688‒707.

DOI: https://doi.org/10.1108/TG-03-2023-0036
View in Google Scholar

Alimam, H., Mazzuto, G., Tozzi, N., Ciarapica, F. E., & Bevilacqua, M. (2023). The resurrection of digital triplet: A cognitive pillar of human‒machine integration at the dawn of Industry 5.0. Journal of King Saud University ‒ Computer and Information Sciences, 35(10), 101846.

DOI: https://doi.org/10.1016/j.jksuci.2023.101846
View in Google Scholar

Al-Sharafi, M. A., Al-Emran, M., Al-Qaysi, N., Iranmanesh, M., & Ibrahim, N. (2023). Drivers and barriers affecting metaverse adoption: A systematic review, theoretical framework, and avenues for future research. International Journal of Human–Computer Interaction.

DOI: https://doi.org/10.1080/10447318.2023.2260984
View in Google Scholar

Aung, N., Dhelim, S., Chen, L., Ning, H., Atzori, L., & Kechadi, T. (2024). Edge-enabled metaverse: The convergence of metaverse and mobile edge computing. Tsinghua Science and Technology, 29(3), 795‒805.

DOI: https://doi.org/10.26599/TST.2023.9010052
View in Google Scholar

Awan, K. A., Din, I. U., Almogren, A., & Seo-Kim, B. (2023). Blockchain-based trust management for virtual entities in the metaverse: A model for avatar and virtual organization interactions. IEEE Access, 11, 136370‒136394.

DOI: https://doi.org/10.1109/ACCESS.2023.3337806
View in Google Scholar

Balaska, V., Adamidou, Z., Vryzas, Z., & Gasteratos, A. (2023). Sustainable crop protection via robotics and artificial intelligence solutions. Machines, 11(8), 774.

DOI: https://doi.org/10.3390/machines11080774
View in Google Scholar

Bellalouna, F., & Puljiz, D. (2023). Use case for the application of the industrial metaverse approach for engineering design review. Procedia CIRP, 119, 638‒643.

DOI: https://doi.org/10.1016/j.procir.2023.03.116
View in Google Scholar

Bhattacharya, P., Saraswat, D., Savaliya, D., Sanghavi, S., Verma, A., Sakariya, V., Sharma, R., Raboaca, M. S., & Manea, D. L. (2023). Towards future Internet: The metaverse perspective for diverse industrial applications. Mathematics, 11(4), 941.

DOI: https://doi.org/10.3390/math11040941
View in Google Scholar

Calandra, D., Oppioli, M., Sadraei, R., Jafari-Sadeghi, V., & Biancone, P. P. (2024). Metaverse meets digital entrepreneurship: A practitioner-based qualitative synthesis. International Journal of Entrepreneurial Behavior & Research, 30(2/3), 666‒686.

DOI: https://doi.org/10.1108/IJEBR-01-2023-0041
View in Google Scholar

Camacho-Muñoz, G. A., Camilo Martínez Franco, J., Nope-Rodríguez, S. E., Loaiza-Correa, H., Gil-Parga, S., & Álvarez-Martínez, D. (2023). 6D-ViCuT: Six degree-of-freedom visual cuboid tracking dataset for manual packing of cargo in warehouses. Data in Brief, 49, 109385.

DOI: https://doi.org/10.1016/j.dib.2023.109385
View in Google Scholar

Cao, J., Zhu, X., Sun, S., Wei, Z., Jiang, Y., Wang, J., & Lau, V. K. N. (2023). Toward industrial metaverse: Age of information, latency and reliability of short-packet transmission in 6G. IEEE Wireless Communications, 30(2), 40‒47.

DOI: https://doi.org/10.1109/MWC.2001.2200396
View in Google Scholar

Chai, T., Li, M., Zhou, Z., Cheng, S., Jia, Y., & Wu, Z. (2023a). An intelligent control method for the low-carbon operation of energy-intensive equipment. Engineering, 27, 84‒95.

DOI: https://doi.org/10.1016/j.eng.2023.05.018
View in Google Scholar

Chai, Y., Qian, J., & Younas, M. (2023b). Metaverse: Concept, key technologies, and vision. International Journal of Crowd Science, 7(4), 149‒157.

DOI: https://doi.org/10.26599/IJCS.2023.9100024
View in Google Scholar

Chang, L., Zhang, Z., Li, P., Xi, S., Guo, W., Shen, Y., Xiong, Z., Kang, J., Niyato, D., Qiao, X., & Wu, Y. (2022). 6G-enabled edge AI for metaverse: Challenges, methods, and future research directions. Journal of Communications and Information Networks, 7(2), 107‒121.

DOI: https://doi.org/10.23919/JCIN.2022.9815195
View in Google Scholar

Chen, C., Fu, H., Zheng, Y., Tao, F., & Liu, Y. (2023a). The advance of digital twin for predictive maintenance: The role and function of machine learning. Journal of Manufacturing Systems, 71, 581‒594.

DOI: https://doi.org/10.1016/j.jmsy.2023.10.010
View in Google Scholar

Chen, C., Zhang, H., Hou, J., Zhang, Y., Zhang, H., Dai, J., Pang, S., & Wang, C. (2023b). Deep learning in the ubiquitous human–computer interactive 6G era: Applications, principles and prospects. Biomimetics, 8(4), 343.

DOI: https://doi.org/10.3390/biomimetics8040343
View in Google Scholar

Chen, W., Zeng, C., Liang, H., Sun, F., & Zhang, J. (2023c). Multimodality driven impedance-based Sim2Real transfer learning for robotic multiple peg-in-hole assembly. IEEE Transactions on Cybernetics.

DOI: https://doi.org/10.1109/TCYB.2023.3310505
View in Google Scholar

Chen, Y., Huang, W., Jiang, X., Zhang, T., Wang, Y., Yan, B., Wang, Z., Chen, Q., Xing, Y., Li, D., & Long, G. (2023d). UbiMeta: A ubiquitous operating system model for metaverse. International Journal of Crowd Science, 7(4), 180‒189.

DOI: https://doi.org/10.26599/IJCS.2023.9100028
View in Google Scholar

Chowdhury, M. (2023a). Icon: An intelligent resource slicing and task coordination framework for Web 3.0 and metaverse-based service execution over 6G-based immersive edge computing network. International Journal of Ad Hoc and Ubiquitous Computing, 44(3), 167‒202.

DOI: https://doi.org/10.1504/IJAHUC.2023.134763
View in Google Scholar

Chowdhury, M. (2023b). Servant: A user service requirements, timeslot sacrifice, and triple benefit-aware resource and worker provisioning scheme for digital twin and MEC enhanced 6G networks. International Journal of Sensor Networks, 41(4), 205‒228.

DOI: https://doi.org/10.1504/IJSNET.2023.130710
View in Google Scholar

Cui, Z., Yang, X., Yue, J., Liu, X., Tao, W., Xia, Q., & Wu, C. (2023). A review of digital twin technology for electromechanical products: Evolution focus throughout key lifecycle phases. Journal of Manufacturing Systems, 70, 264‒287.

DOI: https://doi.org/10.1016/j.jmsy.2023.07.016
View in Google Scholar

Dolgui, A., & Ivanov, D. (2023). Metaverse supply chain and operations management. International Journal of Production Research, 61(23), 8179‒8191.

DOI: https://doi.org/10.1080/00207543.2023.2240900
View in Google Scholar

Erman, B., & Martino, C. D. (2023). Generative network performance prediction with network digital twin. IEEE Network, 37(2), 286‒292.

DOI: https://doi.org/10.1109/MNET.002.2200515
View in Google Scholar

Faraboschi, P., Frachtenberg, E., Laplante, P., Milojicic, D., & Saracco, R. (2023). Digital transformation: Lights and shadows. Computer, 56(4), 123‒130.

DOI: https://doi.org/10.1109/MC.2023.3241726
View in Google Scholar

Ferrari, F., & McKelvey, F. (2023). Hyperproduction: A social theory of deep generative models. Distinktion: Journal of Social Theory, 24(2), 338‒360.

DOI: https://doi.org/10.1080/1600910X.2022.2137546
View in Google Scholar

Ferrigno, G., Di Paola, N., Oguntegbe, K. F., & Kraus, S. (2023). Value creation in the metaverse age: A thematic analysis of press releases. International Journal of Entrepreneurial Behavior & Research, 29(11), 337‒363.

DOI: https://doi.org/10.1108/IJEBR-01-2023-0039
View in Google Scholar

Fu, M., Wang, Z., Wang, J., Wang, Q., Wu, J., Sun, L., Ma, Z., Huang, R., Li, X., Wang, D., & Liang, Q. (2023). Environmental intelligent perception in the industrial Internet of Things: A case study analysis of a multicrane visual sorting system. IEEE Sensors Journal, 23(19), 22731‒22741.

DOI: https://doi.org/10.1109/JSEN.2023.3294962
View in Google Scholar

Ganchev, I., Ji, Z., & O’Droma, M. (2023). Horizontal IoT platform EMULSION. Electronics, 12(8), 1864.

DOI: https://doi.org/10.3390/electronics12081864
View in Google Scholar

Gattullo, M., Laviola, E., Evangelista, A., Fiorentino, M., & Uva, A. E. (2022). Towards the evaluation of augmented reality in the metaverse: Information presentation modes. Applied Sciences, 12(24), 12600.

DOI: https://doi.org/10.3390/app122412600
View in Google Scholar

Gourisetti, S. N. G., Bhadra, S., Sebastian-Cardenas, D. J., Touhiduzzaman, M., & Ahmed, O. A. (2023). Theoretical open architecture framework and technology stack for digital twins in energy sector applications. Energies, 16(13), 4853.

DOI: https://doi.org/10.3390/en16134853
View in Google Scholar

Grieves, M. (2023). Digital twin certified: Employing virtual testing of digital twins in manufacturing to ensure quality products. Machines, 11(8), 808.

DOI: https://doi.org/10.3390/machines11080808
View in Google Scholar

Guo, Y., Klink, A., Bartolo, P., & Guo, W. G. (2023). Digital twins for electro-physical, chemical, and photonic processes. CIRP Annals, 72(2), 593‒619.

DOI: https://doi.org/10.1016/j.cirp.2023.05.007
View in Google Scholar

Han, J., Yang, M., Chen, X., Liu, H., Wang, Y., Li, J., Su, Z., Li, Z., & Ma, X. (2023a). ParaDefender: A scenario-driven parallel system for defending metaverses. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(4), 2118‒2127.

DOI: https://doi.org/10.1109/TSMC.2022.3228928
View in Google Scholar

Han, S., Jin, L., Xu, X., Tao, X., & Zhang, P. (2023b). R3C: Reliability and control cost co-aware in RIS-assisted wireless control systems for IIoT. IEEE Internet of Things Journal, 11(8), 13692‒13707.

DOI: https://doi.org/10.1109/JIOT.2023.3338618
View in Google Scholar

Hou, J., Chen, G., Li, Z., He, W., Gu, S., Knoll, A., & Jiang, C. (2024). Hybrid residual multiexpert reinforcement learning for spatial scheduling of high-density parking lots. IEEE Transactions on Cybernetics, 54(5), 2771‒2783.

DOI: https://doi.org/10.1109/TCYB.2023.3312647
View in Google Scholar

Hou, X., Wang, J., Jiang, C., Meng, Z., Chen, J., & Ren, Y. (2024). Efficient federated learning for metaverse via dynamic user selection, gradient quantization and resource allocation. IEEE Journal on Selected Areas in Communications, 42(4), 850‒866.

DOI: https://doi.org/10.1109/JSAC.2023.3345393
View in Google Scholar

Huawei, H., Qinnan, Z., Taotao, L., Qinglin, Y., Zhaokang, Y., Junhao, W., Xiong, Z., Jianming, Z., Wu, J., & Zheng, Z. (2023). Economic systems in the metaverse: Basics, state of the art, and challenges. ACM Computing Surveys, 56(4), 99.

DOI: https://doi.org/10.1145/3626315
View in Google Scholar

Jagatheesaperumal, S. K., & Rahouti, M. (2022). Building digital twins of cyber physical systems with metaverse for Industry 5.0 and beyond. IT Professional, 24(6), 34‒40.

DOI: https://doi.org/10.1109/MITP.2022.3225064
View in Google Scholar

Jagatheesaperumal, S. K., Yang, Z., Yang, Q., Huang, C., Xu, W., Shikh-Bahaei, M., & Zhang, Z. (2023). Semantic-aware digital twin for metaverse: A comprehensive review. IEEE Wireless Communications, 30(4), 38‒46.

DOI: https://doi.org/10.1109/MWC.003.2200616
View in Google Scholar

Jaimini, U., Zhang, T., Brikis, G. O., & Sheth, A. (2022). iMetaverseKG: Industrial metaverse knowledge graph to promote interoperability in design and engineering applications. IEEE Internet Computing, 26(6), 59‒67.

DOI: https://doi.org/10.1109/MIC.2022.3212085
View in Google Scholar

Jamshidi, M., Dehghaniyan Serej, A., Jamshidi, A., & Moztarzadeh, O. (2023). The meta-metaverse: Ideation and future directions. Future Internet, 15(8), 252.

DOI: https://doi.org/10.3390/fi15080252
View in Google Scholar

Ji, B., Wang, X., Liang, Z., Zhang, H., Xia, Q., Xie, L., Yan, H., Sun, F., Feng, H., Tao, K., Shen, Q., & Yin, E. (2023). Flexible strain sensor-based data glove for gesture interaction in the metaverse: A review. International Journal of Human–Computer Interaction.

DOI: https://doi.org/10.1080/10447318.2023.2212232
View in Google Scholar

Jim, J. R., Hosain, M. T., Mridha, M. F., Kabir, M. M., & Shin, J. (2023). Toward trustworthy metaverse: Advancements and challenges. IEEE Access, 11, 118318‒118347.

DOI: https://doi.org/10.1109/ACCESS.2023.3326258
View in Google Scholar

Kaarlela, T., Padrao, P., Pitkäaho, T., Pieskä, S., & Bobadilla, L. (2023a). Digital twins utilizing XR-technology as robotic training tools. Machines, 11(1), 13.

DOI: https://doi.org/10.3390/machines11010013
View in Google Scholar

Kaarlela, T., Pitkäaho, T., Pieskä, S., Padrão, P., Bobadilla, L., Tikanmäki, M., Haavisto, T., Blanco Bataller, V., Laivuori, N., Luimula, M. (2023b). Towards metaverse: Utilizing extended reality and digital twins to control robotic systems. Actuators, 12(6), 219.

DOI: https://doi.org/10.3390/act12060219
View in Google Scholar

Kaigom, E. G. (2024). Metarobotics for industry and society: Vision, technologies, and opportunities. IEEE Transactions on Industrial Informatics. 20(4), 5725‒5736.

DOI: https://doi.org/10.1109/TII.2023.3337380
View in Google Scholar

Khalaj, O., Jamshidi, M., Hassas, P., Hosseininezhad, M., Mašek, B., Štadler, C., & Svoboda, J. (2023). Metaverse and AI digital twinning of 42SiCr steel alloys. Mathematics, 11(1), 4.

DOI: https://doi.org/10.3390/math11010004
View in Google Scholar

Koohang, A., Nord, J. H., Ooi, K.-B., Wei-Han Tan, G., Al-Emran, M., Cheng-Xi Aw, E., Baabdullahh, A. M., Buhalis, D., Cham, T.-H., Dennis, C., Dutot, V., Dwivedi, Y. K., Hughes, L., Mogaji, E., Pandey, N., Phau, I., Raman, R., Sharma, A., Sigala, M., Ueno, A., & Wong, L.-W. (2023). Shaping the metaverse into reality: A holistic multidisciplinary understanding of opportunities, challenges, and avenues for future investigation. Journal of Computer Information Systems, 63(3), 735‒765.

DOI: https://doi.org/10.1080/08874417.2023.2165197
View in Google Scholar

Kshetri, N. (2023a). The economics of the industrial metaverse. IT Professional, 25(1), 84‒88.

DOI: https://doi.org/10.1109/MITP.2023.3236494
View in Google Scholar

Kshetri, N. (2023b). Metaverse technologies in product management, branding and communications: Virtual and augmented reality, artificial intelligence, non-fungible tokens and brain‒computer interface. Central European Management Journal, 31(4), 511‒521.

DOI: https://doi.org/10.1108/CEMJ-08-2023-0336
View in Google Scholar

Laviola, E., Gattullo, M., Manghisi, V. M., Fiorentino, M., & Uva, A. E. (2022). Minimal AR: Visual asset optimization for the authoring of augmented reality work instructions in manufacturing. International Journal of Advanced Manufacturing Technology, 119, 1769–1784.

DOI: https://doi.org/10.1007/s00170-021-08449-6
View in Google Scholar

Lăzăroiu, G., Androniceanu, A., Grecu, I., Grecu, G., & Neguriță, O. (2022). Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing. Oeconomia Copernicana, 13(4), 1047–1080.

DOI: https://doi.org/10.24136/oc.2022.030
View in Google Scholar

Lăzăroiu, G., Bogdan, M., Geamănu, M., Hurloiu, L., Luminița, L., & Ștefănescu, R. (2023). Artificial intelligence algorithms and cloud computing technologies in blockchain-based fintech management. Oeconomia Copernicana, 14(3), 707–730.

DOI: https://doi.org/10.24136/oc.2023.021
View in Google Scholar

Lee, J., & Kundu, P. (2022). Integrated cyber-physical systems and industrial metaverse for remote manufacturing. Manufacturing Letters, 34, 12‒15.

DOI: https://doi.org/10.1016/j.mfglet.2022.08.012
View in Google Scholar

Leng, J., Sha, W., Wang, B., Zheng, P., Zhuang, C., Liu, Q., Wuest, T., Mourtzis D., & Wang, L. (2022). Industry 5.0: Prospect and retrospect. Journal of Manufacturing Systems, 65, 279‒295.

DOI: https://doi.org/10.1016/j.jmsy.2022.09.017
View in Google Scholar

Lewandowska, A., Berniak-Woźny, J., & Ahmad, N. (2023). Competitiveness and innovation of small and medium enter-prises under Industry 4.0 and 5.0 challenges: A comprehensive bibliometric analysis. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 1045–1074.

DOI: https://doi.org/10.24136/eq.2023.033
View in Google Scholar

Li, K., Lau, B. P. L., Yuan, X., Ni, W., Guizani, M., & Yuen, C. (2023a). Toward ubiquitous semantic metaverse: Challenges, approaches, and opportunities. IEEE Internet of Things Journal, 10(24), 21855‒21872.

DOI: https://doi.org/10.1109/JIOT.2023.3302159
View in Google Scholar

Li, Q., Kong, L., Min, X., & Zhang, B. (2023b). DareChain: A blockchain-based trusted collaborative network infrastructure for metaverse. International Journal of Crowd Science, 7(4), 168‒179.

DOI: https://doi.org/10.26599/IJCS.2023.9100025
View in Google Scholar

Li, X., Tian, Y., Ye, P., Duan, H., & Wang, F.-Y. (2023c). A novel scenarios engineering methodology for foundation models in metaverse. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(4), 2148‒2159.

DOI: https://doi.org/10.1109/TSMC.2022.3228594
View in Google Scholar

Liu, J., Ma, C., & Wang, S. (2023a). Thermal-structure finite element simulation system architecture in a cloud-edge-end collaborative environment. Journal of Intelligent Manufacturing.

DOI: https://doi.org/10.1007/s10845-023-02269-z
View in Google Scholar

Liu, S., Xie, J., & Wang, X. (2023b). QoE enhancement of the industrial metaverse based on mixed reality application optimization. Displays, 79, 102463.

DOI: https://doi.org/10.1016/j.displa.2023.102463
View in Google Scholar

Lyu, Z., & Fridenfalk, M. (2023). Digital twins for building industrial metaverse. Journal of Advanced Research.

DOI: https://doi.org/10.1016/j.jare.2023.11.019
View in Google Scholar

Ma, S., Liu, H., Pan, N., & Wang, S. (2023). Study on an autonomous distribution system for smart parks based on parallel system theory against the background of Industry 5.0. Journal of King Saud University ‒ Computer and Information Sciences, 35(7), 101608.

DOI: https://doi.org/10.1016/j.jksuci.2023.101608
View in Google Scholar

Magalhães, L. C., Magalhães, L. C., Ramos, J. B., Moura, L. R., de Moraes, R. E. N., Gonçalves, J. B., Hisatugu, W. H., Souza, M. T., de Lacalle, L. N. L., & Ferreira, J. C. E. (2022). Conceiving a digital twin for a flexible manufacturing system. Applied Sciences, 12(19), 9864.

DOI: https://doi.org/10.3390/app12199864
View in Google Scholar

Maier, M., Hosseini, N., & Soltanshahi, M. (2024). INTERBEING: On the symbiosis between INTERnet and human BEING. IEEE Consumer Electronics Magazine, 13(3), 98‒106.

DOI: https://doi.org/10.1109/MCE.2023.3319849
View in Google Scholar

Meng, Z., Chen, K., Diao, Y., She, C., Zhao, G., Imran, M. A., & Vucetic, B. (2024). Task-oriented cross-system design for timely and accurate modelling in the metaverse. IEEE Journal on Selected Areas in Communications, 42(3), 752‒766.

DOI: https://doi.org/10.1109/JSAC.2023.3345398
View in Google Scholar

Mosco, V. (2023). Into the metaverse: Technical challenges, social problems, utopian visions, and policy principles. Javnost ‒ The Public, 30(2), 161‒173.

DOI: https://doi.org/10.1080/13183222.2023.2200688
View in Google Scholar

Mourad, N., Alsattar, H. A., Qahtan, S., Zaidan, A. A., Deveci, M., Sangaiah, A. K., & Pedrycz, W. (2023). Optimising control engineering tools using digital twin capabilities and other cyber-physical metaverse manufacturing system components. IEEE Transactions on Consumer Electronics.

DOI: https://doi.org/10.1109/TCE.2023.3326047
View in Google Scholar

Mourtzis, D., & Angelopoulos, J. (2023). Development of an extended reality-based collaborative platform for engineering education: Operator 5.0. Electronics, 12(17), 3663.

DOI: https://doi.org/10.3390/electronics12173663
View in Google Scholar

Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2023a). Blockchain integration in the era of industrial metaverse. Applied Sciences, 13(3), 1353.

DOI: https://doi.org/10.3390/app13031353
View in Google Scholar

Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2023b). The future of the human–machine interface (HMI) in society 5.0. Future Internet, 15(5), 162.

DOI: https://doi.org/10.3390/fi15050162
View in Google Scholar

Mourtzis, D., Angelopoulos, J., & Panopoulos, N. (2024). Unmanned aerial vehicle (UAV) path planning and control assisted by augmented reality (AR): The case of indoor drones. International Journal of Production Research, 62(9), 3361‒3382.

DOI: https://doi.org/10.1080/00207543.2023.2232470
View in Google Scholar

Nagy, M., Lăzăroiu, G., & Valaskova, K. (2023). Machine intelligence and autonomous robotic technologies in the corporate context of SMEs: Deep learning and virtual simulation algorithms, cyber-physical production networks, and Industry 4.0-based manufacturing systems. Applied Sciences, 13(3), 1681.

DOI: https://doi.org/10.3390/app13031681
View in Google Scholar

Nair, M. R., Bindu, N., Jose, R., & Satheesh Kumar, K. (2024). From assistive technology to the backbone: The impact of blockchain in manufacturing. Evolutionary Intelligence, 17(3), 1257–1278.

DOI: https://doi.org/10.1007/s12065-023-00872-w
View in Google Scholar

Navarro, J. M., & Pita, A. (2023). Machine learning prediction of the long-term environmental acoustic pattern of a city location using short-term sound pressure level measurements. Applied Sciences, 13(3), 1613.

DOI: https://doi.org/10.3390/app13031613
View in Google Scholar

Negri, E., & Abdel-Aty, T. A. (2023). Clarifying concepts of metaverse, digital twin, digital thread and AAS for CPS-based production systems. IFAC-PapersOnLine, 56(2), 6351‒6357.

DOI: https://doi.org/10.1016/j.ifacol.2023.10.818
View in Google Scholar

Netland, T., Stegmaier, M., Primultini, C., & Maghazei, O. (2023). Interactive mixed reality live streaming technology in manufacturing. Manufacturing Letters, 38, 6‒10.

DOI: https://doi.org/10.1016/j.mfglet.2023.08.141
View in Google Scholar

Ooi, K.-B., Wei-Han Tan, G., Al-Emran, M., Al-Sharafi, M. A., Arpaci, I., Zaidan, A. A., Lee, V.-H., Wong, L.-W., Deveci, M., & Iranmanesh, M. (2023). The metaverse in engineering management: Overview, opportunities, challenges, and future research agenda. IEEE Transactions on Engineering Management.

DOI: https://doi.org/10.1109/TEM.2023.3307562
View in Google Scholar

Özkal, İ., Özkan, İ. A., & Başçiftçi, F. (2024). Metaverse token price forecasting using artificial neural networks (ANNs) and adaptive neural fuzzy inference system (ANFIS). Neural Computing and Applications, 36, 3267–3290.

DOI: https://doi.org/10.1007/s00521-023-09228-y
View in Google Scholar

Park, A., Wilson, M., Robson, K., Demetis, D., & Kietzmann, J. (2023). Interoperability: Our exciting and terrifying Web3 future. Business Horizons, 66(4), 529‒541.

DOI: https://doi.org/10.1016/j.bushor.2022.10.005
View in Google Scholar

Qian, F., Tang, Y., & Yu, X. (2023). The future of process industry: A cyber–physical–social system perspective. IEEE Transactions on Cybernetics.

DOI: https://doi.org/10.1109/TCYB.2023.3298838
View in Google Scholar

Reiman, A., Kaivo-oja, J., Parviainen, E., Takala, E.-P., & Lauraeus, T. (2023). Human work in the shift to Industry 4.0: A road map to the management of technological changes in manufacturing. International Journal of Production Research.

DOI: https://doi.org/10.1080/00207543.2023.2291814
View in Google Scholar

Rejeb, A., Rejeb, K., & Treiblmaier, H. (2023). Mapping metaverse research: Identifying future research areas based on bibliometric and topic modelling techniques. Information, 14(7), 356.

DOI: https://doi.org/10.3390/info14070356
View in Google Scholar

Ritterbusch, G. D., & Teichmann, M. R. (2023). Defining the metaverse: A systematic literature review. IEEE Access, 11, 12368‒12377.

DOI: https://doi.org/10.1109/ACCESS.2023.3241809
View in Google Scholar

Salam, A., Javaid, Q., Ahmad, M., Wahid, I., & Arafat, M. Y. (2023). Cluster-based data aggregation in flying sensor networks enabled Internet of Things. Future Internet, 15(8), 279.

DOI: https://doi.org/10.3390/fi15080279
View in Google Scholar

Schmitt, M. (2023). Securing the digital world: Protecting smart infrastructures and digital industries with artificial intelligence (AI)-enabled malware and intrusion detection. Journal of Industrial Information Integration, 36, 100520.

DOI: https://doi.org/10.1016/j.jii.2023.100520
View in Google Scholar

Semeraro, C., Alyousuf, N., Kedir, N. I., & Lail, E. A. (2023). A maturity model for evaluating the impact of Industry 4.0 technologies and principles in SMEs. Manufacturing Letters, 37, 61‒65.

DOI: https://doi.org/10.1016/j.mfglet.2023.07.018
View in Google Scholar

Siriweera, A., & Naruse, K. (2023). QoS-aware federated crosschain-based model-driven reference architecture for IIoT sensor networks in distributed manufacturing. IEEE Sensors Journal, 23(23), 29630‒29644.

DOI: https://doi.org/10.1109/JSEN.2023.3325342
View in Google Scholar

Starly, B., Koprov, P., Bharadwaj, A., Batchelder, T., & Breitenbach, B. (2023). Unreal’ factories: Next generation of digital twins of machines and factories in the industrial metaverse. Manufacturing Letters, 37, 50‒52.

DOI: https://doi.org/10.1016/j.mfglet.2023.07.021
View in Google Scholar

Stary, C. (2023). Digital process twins as intelligent design technology for engineering metaverse/XR applications. Sustainability, 15(22), 16062.

DOI: https://doi.org/10.3390/su152216062
View in Google Scholar

Stavroulakis, G. E., Charalambidi, B. G., & Koutsianitis, P. (2022). Review of computational mechanics, optimization, and machine learning tools for digital twins applied to infrastructures. Applied Sciences, 12(23), 11997.

DOI: https://doi.org/10.3390/app122311997
View in Google Scholar

Stodt, F., Stodt, J., & Reich, C. (2023). Blockchain secured dynamic machine learning pipeline for manufacturing. Applied Sciences, 13(2), 782.

DOI: https://doi.org/10.3390/app13020782
View in Google Scholar

Stothard, P. (2023). Mining metaverse – A future collaborative tool for best practice mining. Mining Technology, 132(3), 165‒178.

DOI: https://doi.org/10.1080/25726668.2023.2235155
View in Google Scholar

Striffler, N., & Voigt, T. (2023). Concepts and trends of virtual commissioning – A comprehensive review. Journal of Manufacturing Systems, 71, 664‒680.

DOI: https://doi.org/10.1016/j.jmsy.2023.10.013
View in Google Scholar

Tan, G. W.-H., Aw, E. C.-X., Cham, T.-H., Ooi, K.-B., Dwivedi, Y. K., Alalwan, A. A., Balakrishnan, J., Chan, H. K., Hew, J.-J., Hughes, L., Jain, V., Lee, V. H., Lin, B., Rana, N. P., & Tan, T. M. (2023). Metaverse in marketing and logistics: The state of the art and the path forward. Asia Pacific Journal of Marketing and Logistics, 35(12), 2932‒2946.

DOI: https://doi.org/10.1108/APJML-01-2023-0078
View in Google Scholar

Theodoropoulos, N., Kampourakis, E., Andronas, D., & Makris, S. (2023). Cyber-physical systems in non-rigid assemblies: A methodology for the calibration of deformable object reconstruction models. Journal of Manufacturing Systems, 70, 525‒537.

DOI: https://doi.org/10.1016/j.jmsy.2023.08.022
View in Google Scholar

Tlili, A., Huang, R., & Kinshuk (2023). Metaverse for climbing the ladder toward ‘Industry 5.0’ and ‘Society 5.0’? Service Industries Journal, 43(3/4), 260‒287.

DOI: https://doi.org/10.1080/02642069.2023.2178644
View in Google Scholar

Truong, V. T., Le, L., & Niyato, D. (2023). Blockchain meets metaverse and digital asset management: A comprehensive survey. IEEE Access, 11, 26258‒26288.

DOI: https://doi.org/10.1109/ACCESS.2023.3257029
View in Google Scholar

Wan, X., Zhang, G., Yuan, Y., & Chai, S. (2023). How to drive the participation willingness of supply chain members in metaverse technology adoption? Applied Soft Computing, 145, 110611.

DOI: https://doi.org/10.1016/j.asoc.2023.110611
View in Google Scholar

Wan, Z., Gao, Z., Di Renzo, M., & Hanzo, L. (2022). The road to Industry 4.0 and beyond: A communications-, information-, and operation technology collaboration perspective. IEEE Network, 36(6), 157‒164.

DOI: https://doi.org/10.1109/MNET.008.2100484
View in Google Scholar

Wang, B., Zheng, P., Yin, Y., Shih, A., & Wang, L. (2022b). Toward human-centric smart manufacturing: A human-cyber-physical systems (HCPS) perspective. Journal of Manufacturing Systems, 63, 471‒490.

DOI: https://doi.org/10.1016/j.jmsy.2022.05.005
View in Google Scholar

Wang, H., Ning, H., Lin, Y., Wang, W., Dhelim, S., Farha, F., Ding, J., & Daneshmand, M. (2023a). A survey on the metaverse: The state-of-the-art, technologies, applications, and challenges. IEEE Internet of Things Journal, 10(16), 14671‒14688.

DOI: https://doi.org/10.1109/JIOT.2023.3278329
View in Google Scholar

Wang, P., Wei, Z., Qi, H., Wan, S., Xiao, Y., Sun, G., & Zhang, Q. (2024). Mitigating poor data quality impact with federated unlearning for human-centric metaverse. IEEE Journal on Selected Areas in Communications, 42(4), 832‒849.

DOI: https://doi.org/10.1109/JSAC.2023.3345388
View in Google Scholar

Wang, Y., Su, Z., Guo, S., Dai, M., Luan, T. H., & Liu, Y. (2023b). A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. IEEE Internet of Things Journal, 10(17), 14965‒14987.

DOI: https://doi.org/10.1109/JIOT.2023.3263909
View in Google Scholar

Wang, Y., Tian, Y., Wang, J., Cao, Y., Li, S., & Tian, B. (2022a). Integrated inspection of QoM, QoP, and QoS for AOI industries in metaverses. IEEE/CAA Journal of Automatica Sinica, 9(12), 2071‒2078.

DOI: https://doi.org/10.1109/JAS.2022.106091
View in Google Scholar

Wu, D., Yang, Z., Zhang, P., Wang, R., Yang, B., & Ma, X. (2023). Virtual-reality interpromotion technology for metaverse: A survey. IEEE Internet of Things Journal, 10(18), 15788‒15809.

DOI: https://doi.org/10.1109/JIOT.2023.3265848
View in Google Scholar

Xiang, W., Yu, K., Han, F., Fang, L., He, D., & Han, Q.-L. (2024). Advanced manufacturing in Industry 5.0: A survey of key enabling technologies and future trends. IEEE Transactions on Industrial Informatics, 20(2), 1055‒1068.

DOI: https://doi.org/10.1109/TII.2023.3274224
View in Google Scholar

Xinyi, T., Juuso, A., Riku, A.-L., Chao, Y., Pauli, S., & Kari, T. (2023). TwinXR: method for using digital twin descriptions in industrial eXtended reality applications. Frontiers in Virtual Reality, 4, 1019080.

DOI: https://doi.org/10.3389/frvir.2023.1019080
View in Google Scholar

Xuhong, L., & Xuan, Y. (2023). Green transformational leadership and employee organizational citizenship behavior for the environment in the manufacturing industry: A social information processing perspective. Frontiers in Psychology, 13, 1097655.

DOI: https://doi.org/10.3389/fpsyg.2022.1097655
View in Google Scholar

Yang, J., Wang, X., & Zhao, Y. (2022). Parallel manufacturing for industrial metaverses: A new paradigm in smart manufacturing. IEEE/CAA Journal of Automatica Sinica, 9(12), 2063‒2070.

DOI: https://doi.org/10.1109/JAS.2022.106097
View in Google Scholar

Yi, H., Qu, T., Zhang, K., Li, M., Huang, G. Q., & Chen, Z. (2023). Production logistics in Industry 3.X: Bibliometric analysis, frontier case study, and future directions. Systems, 11(7), 371.

DOI: https://doi.org/10.3390/systems11070371
View in Google Scholar

Ying, K., Gao, Z., Chen, S., Zhou, M., Zheng, D., Chatzinotas, S., Ottersten, B., & Poor, H. V. (2023). Quasi-synchronous random access for massive MIMO-based LEO satellite constellations. IEEE Journal on Selected Areas in Communications, 41(6), 1702‒1722.

DOI: https://doi.org/10.1109/JSAC.2023.3273699
View in Google Scholar

Yu, B., Liu, Y., Ren, S., Zhou, Z., & Liu, J. (2023). METAseen: Analyzing network traffic and privacy policies in Web 3.0 based metaverse. Digital Communications and Networks.

DOI: https://doi.org/10.1016/j.dcan.2023.11.006
View in Google Scholar

Zaidan, A. A., Alsattar, H. A., Qahtan, S., Deveci, M., Pamucar, D., & Hajiaghaei-Keshteli, M. (2023). Uncertainty decision modelling approach for control engineering tools to support industrial cyber-physical metaverse smart manufacturing systems. IEEE Systems Journal, 17(4), 5303‒5314.

DOI: https://doi.org/10.1109/JSYST.2023.3266842
View in Google Scholar

Zeng, S., Li, Z., Yu, H., Zhang, Z., Luo, L., Li, B., & Niyato, D. (2023). HFedMS: Heterogeneous federated learning with memorable data semantics in industrial metaverse. IEEE Transactions on Cloud Computing, 11(3), 3055‒3069.

DOI: https://doi.org/10.1109/TCC.2023.3254587
View in Google Scholar

Zhang, L., Du, Q., Lu, L., & Zhang, S. (2023). Overview of the integration of communications, sensing, computing, and storage as enabling technologies for the metaverse over 6G networks. Electronics, 12(17), 3651.

DOI: https://doi.org/10.3390/electronics12173651
View in Google Scholar

Zhou, X., Liu, C., & Zhao, J. (2023). Resource allocation of federated learning for the metaverse with mobile augmented reality. IEEE Transactions on Wireless Communications.

DOI: https://doi.org/10.1109/ICC45041.2023.10279550
View in Google Scholar

Downloads

Published

2024-06-30

How to Cite

Kliestik, T., Kral, P., Bugaj, M., & Durana , P. (2024). Generative artificial intelligence of things systems, multisensory immersive extended reality technologies, and algorithmic big data simulation and modelling tools in digital twin industrial metaverse. Equilibrium. Quarterly Journal of Economics and Economic Policy, 19(2), 429–461. https://doi.org/10.24136/eq.3108

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.