Google and Apple mobility data as predictors for European tourism during the COVID-19 pandemic: A neural network approach
DOI:
https://doi.org/10.24136/eq.2023.013Keywords:
Mobility, Tourism, Google Mobility data, Apple mobility data, Europe, COVID-19 pandemicAbstract
Research background: The COVID-19 pandemic has caused unprecedented disruptions to the global tourism industry, resulting in significant impacts on both human and economic activities. Travel restrictions, border closures, and quarantine measures have led to a sharp decline in tourism demand, causing businesses to shut down, jobs to be lost, and economies to suffer.
Purpose of the article: This study aims to examine the correlation and causal relationship between real-time mobility data and statistical data on tourism, specifically tourism overnights, across eleven European countries during the first 14 months of the pandemic. We analyzed the short longitudinal connections between two dimensions of tourism and related activities.
Methods: Our method is to use Google and Apple's observational data to link with tourism statistical data, enabling the development of early predictive models and econometric models for tourism overnights (or other tourism indices). This approach leverages the more timely and more reliable mobility data from Google and Apple, which is published with less delay than tourism statistical data.
Findings & value added: Our findings indicate statistically significant correlations between specific mobility dimensions, such as recreation and retail, parks, and tourism statistical data, but poor or insignificant relations with workplace and transit dimensions. We have identified that leisure and recreation have a much stronger influence on tourism than the domestic and routine-named dimensions. Additionally, our neural network analysis revealed that Google Mobility Parks and Google Mobility Retail & Recreation are the best predictors for tourism, while Apple Driving and Apple Walking also show significant correlations with tourism data. The main added value of our research is that it combines observational data with statistical data, demonstrates that Google and Apple location data can be used to model tourism phenomena, and identifies specific methods to determine the extent, direction, and intensity of the relationship between mobility and tourism flows.
Downloads
References
Aaker, D. A., Kumar, V., & Day, G. S. (1998). Marketing research. Indianapolis: John Wiley & Sons.
View in Google Scholar
Apple mobility database (2021). Apple makes mobility data available to aid COVID-19 efforts. Retrieved from https://www.apple.com/newsroom/2020/ 04/apple-makes-mobility-data-available-to-aid-covid-19-efforts (31.05.2021).
View in Google Scholar
Apple mobility reports (2021). COVID 19 - Mobility Trends Reports. Retrieved from https://covid19.apple.com/mobility (31.05.2021).
View in Google Scholar
Atalay, S., & Solmazer, G. (2021). The relationship between cultural value orienta-tions and the changes in mobility during the Covid-19 pandemic: a national-level analysis. Frontiers in Psychology, 12, 578190. doi: 10.3389/fpsyg.2021.578190.
DOI: https://doi.org/10.3389/fpsyg.2021.578190
View in Google Scholar
Bangwayo-Skeete, P. F., & Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454–464. doi: 10.1016/j.tourman.2014.07.014.
DOI: https://doi.org/10.1016/j.tourman.2014.07.014
View in Google Scholar
Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer use as an illustration. Technological Studies, 2(2), 285–309.
View in Google Scholar
Baron, T., Biji, E., Tövisi, L.Wagner, P., Isaic-Maniu, Al., Korka, M., & Porojan, D. (1996). Theoretical and economics statistics. Bucharest: Didactică și Pedagogică.
View in Google Scholar
Beckers, J., Weekx, S., Beutels, P., & Verhetsel, A. (2021). COVID-19 and retail: The catalyst for e-commerce in Belgium? Journal of Retailing and Consumer Ser-vices, 62, 102645. doi: 10.1016/j.jretconser.2021.102645.
DOI: https://doi.org/10.1016/j.jretconser.2021.102645
View in Google Scholar
Bengtsson, L., Gaudart, J., Lu, X., Moore, S., Wetter, E., Sallah, K., Rebaudet, S., & Piarroux, R. (2015). Using mobile phone data to predict the spatial spread of cholera. Scientific reports, 5(1), 8923. doi: 10.1038/srep08923.
DOI: https://doi.org/10.1038/srep08923
View in Google Scholar
Brodeur, A., Gray, D., Islam, A., & Bhuiyan, S. (2021). A literature review of the economics of COVID‐19. Journal of Economic Surveys, 35(4), 1007–1044. doi: 10.1111/joes.12423.
DOI: https://doi.org/10.1111/joes.12423
View in Google Scholar
Churchill, G. A. (2001). Basic marketing research. The Dryden Press.
View in Google Scholar
Cot, C., Cacciapaglia, G., & Sannino, F. (2021). Mining Google and Apple mobility data: Temporal anatomy for COVID-19 social distancing. Scientific Reports, 11(1), 4150. doi: 10.1038/s41598-021-83441-4.
DOI: https://doi.org/10.1038/s41598-021-83441-4
View in Google Scholar
d’Astous, A. (2005). Design of marketing research. Montréal: Chenelièr Éducation.
View in Google Scholar
Eurostat (2021). Nights spent at tourist accommodation establishments by resi-dents/non-residents. Retrieved from https://ec.europa.eu/eurostat/databrowser /view/tin00171/default/table?lang=en (15.06.2021).
View in Google Scholar
Evrard, Y., Pras, B., & Roux, E. (2003). Marketing- studies and researches in marketing. Paris: Dunod.
View in Google Scholar
Fenneteau, H., & Bialès, C. (1993). Da statistical analysis – applications and study cases for marketing. Paris: Ellipses.
View in Google Scholar
Finger, F., Genolet, T., Mari, L., de Magny, G. C., Manga, N. M., Rinaldo, A., & Bertuzzo, E. (2016). Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks. Proceedings of the National Academy of Sciences, 113(23), 6421–6426. doi: 10.1073/pnas.1522305113.
DOI: https://doi.org/10.1073/pnas.1522305113
View in Google Scholar
Fritz, C., Dorigatti, E., & Rügamer, D. (2022). Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany. Scientific Reports, 12(1), 3930. doi: 10.1038/s41598-022-07757-5.
DOI: https://doi.org/10.1038/s41598-022-07757-5
View in Google Scholar
Gabor, M. R. (2013). Market prospecting though statistical methods. Bucharest: CH Beck.
View in Google Scholar
Gabor, M.R. (2016). Analysis and inference of statistical data. Bucharest: CH Beck.
View in Google Scholar
García-Cremades, S., Morales-García, J., Hernández-Sanjaime, R., Martínez-España, R., Bueno-Crespo, A., Hernández-Orallo, E., López-Espín, J. J., & Ce-cilia, J. M. (2021). Improving prediction of COVID-19 evolution by fusing epi-demiological and mobility data. Scientific Reports, 11(1), 15173. doi: 10.1038/s41598-021-94696-2.
DOI: https://doi.org/10.1038/s41598-021-94696-2
View in Google Scholar
Gauthy Sinéchal, M., & Vandercammen, M. (2005). Marketing studies – methods and tools. Buxelles: De Boeck & Larcier.
View in Google Scholar
Geng, D., Innes, J., Wu, W., & Wang, G. (2021). Impacts of COVID-19 pandemic on urban park visitation: A global analysis. Journal of Forestry Research, 32, 553–567. doi: 10.1007/s11676-020-01249-w.
DOI: https://doi.org/10.1007/s11676-020-01249-w
View in Google Scholar
Ghorbani, A., Mousazadeh, H., Akbarzadeh Almani, F., Lajevardi, M., Hamidiza-deh, M. R., Orouei, M., Zhu, K., & Dávid, L. D (2023). Reconceptualizing cus-tomer perceived value in hotel management in turbulent times: A case study of Isfahan metropolis five-star hotels during the COVID-19 Pandemic. Sustainability, 15(8), 7022. doi: 10.3390/su15087022.
DOI: https://doi.org/10.3390/su15087022
View in Google Scholar
Giannelloni, J. L., & Vernette, E. (2003). Marketing studies. Paris: Vuibert.
View in Google Scholar
Google Mobility database (2021). Mobility Report CSV Documentation. Retrieved from https://www.google.com/covid19/mobility/data_documentation.html?h l=en (31.05.2021).
View in Google Scholar
Google mobility reports (2022). Community mobility reports. Retrieved from https://www.google.com/covid19/mobility/ (20.12.2022).
View in Google Scholar
Hakim, A. J., Victory, K. R., Chevinsky, J. R., Hast, M. A., Weikum, D., Kazazian, L., Bhatkoti, R., Schmitz, M. M., Lynch, M., & Marston, B. J. (2021). Mitigation policies, community mobility, and COVID-19 case counts in Australia, Japan, Hong Kong, and Singapore. Public Health, 194, 238–244. doi: 10.1016/j.puhe.2021.02. 001.
DOI: https://doi.org/10.1016/j.puhe.2021.02.001
View in Google Scholar
Hall, M. C., Prayag, G., Fieger, P., & Dyason, D. (2020). Beyond panic buying: Consumption displacement and COVID-19. Journal of Service Management, 32(1), 113–128. doi: 10.1108/JOSM-05-2020-0151.
DOI: https://doi.org/10.1108/JOSM-05-2020-0151
View in Google Scholar
Hayes, B. E. (1998). Measuring customer satisfaction – survey design, use and statistical analysis methods. Wisconsin: ASQ Quality Press.
View in Google Scholar
Ibarra-Espinosa, S., de Freitas, E. D., Ropkins, K., Dominici, F., & Rehbein, A. (2021). Association between COVID-19, mobility and environment in São Pau-lo, Brazil. medRxiv. doi: 10.1101/2021.02.08.21250113.
DOI: https://doi.org/10.1101/2021.02.08.21250113
View in Google Scholar
Irini, F., Kia, A. N., Shannon, D., Jannusch, T., Murphy, F., & Sheehan, B. (2021). Associations between mobility patterns and COVID-19 deaths during the pandemic: A network structure and rank propagation modelling approach. Array, 11, 100075. doi: 10.1016/j.array.2021.100075.
DOI: https://doi.org/10.1016/j.array.2021.100075
View in Google Scholar
Jacobsen, G. D., & Jacobsen, K. H. (2020). Statewide COVID‐19 stay‐at‐home or-ders and population mobility in the United States. World Medical & Health Poli-cy, 12(4), 347–356. doi: 10.1002/wmh3.350.
DOI: https://doi.org/10.1002/wmh3.350
View in Google Scholar
Jolibert, A., & Jourdan, Ph. (2006). Marketing research – research methods and market-ing studies. Paris: Dunod.
View in Google Scholar
Kolková, A., & Ključnikov, A. (2021). Demand forecasting: An alternative ap-proach based on technical indicator Pbands. Oeconomia Copernicana, 12(4), 1063–1094. doi: 10.24136/oc.2021.035.
DOI: https://doi.org/10.24136/oc.2021.035
View in Google Scholar
Kraemer, M. U., Yang, C. H., Gutierrez, B., Wu, C. H., Klein, B., Pigott, D. M., Open COVID-19 Data Working Group, Faria, N. R., Li, R., Hanage, W. P., Brownstein, J. S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus, O. G., & Scarpino, S. V. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493–497. doi: 10.1126/science.abb4218.
DOI: https://doi.org/10.1126/science.abb4218
View in Google Scholar
Lai, S., Ruktanonchai, N. W., Zhou, L., Prosper, O., Luo, W., Floyd, J. R., Weso-lowski, A., Santillana, M., Zhang, C., Du, X., Yu, H., & Tatem, A. J. (2020). Ef-fect of non-pharmaceutical interventions to contain COVID-19 in China. Na-ture, 585(7825), 410-413. doi: 10.1038/s41586-020-2293-x.
DOI: https://doi.org/10.1038/s41586-020-2293-x
View in Google Scholar
Lambin, J. J. (1990). Marketing research- analysis, measure, forecasting. Paris: McGraw.
View in Google Scholar
Lyons, K. (2020). Governments around the world are increasingly using location data to manage the coronavirus. Retrieved from https://theverge.com/2020/3/23 /21190700/eu-mobile-carriers-customer-data-coronavirus-south-korea-taiwan-pr ivacy (31.05.2021).
View in Google Scholar
Malhorta, N. (2004). Marketing studies with SPSS. Paris: Pearson Education France.
View in Google Scholar
McCormick, K., & Salcedo, J. (2017). SPSS statistics for data analysis and visualization. Indianapolis: John Wiley & Sons.
DOI: https://doi.org/10.1002/9781119183426
View in Google Scholar
Mousazadeh, H., Ghorbani, A., Azadi, H., Almani, F. A., Zangiabadi, A., Zhu, K., & Dávid, L. D. (2023). Developing sustainable behaviors for underground her-itage tourism management: The case of Persian Qanats, a UNESCO World Heritage Property. Land, 12(4), 808. doi: 10.3390/land12040808.
DOI: https://doi.org/10.3390/land12040808
View in Google Scholar
Munawar, H. S., Khan, S. I., Qadir, Z., Kouzani, A. Z., & Mahmud, M. P. (2021). Insight into the impact of COVID-19 on Australian transportation sector: An economic and community-based perspective. Sustainability, 13(3), 1276. doi: 10.3 390/su13031276.
DOI: https://doi.org/10.3390/su13031276
View in Google Scholar
Murray, T. (2021). Stay-at-home orders, mobility patterns, and spread of COVID-19. American Journal of Public Health, 111(6), 1149–1156. doi: 10.2105/AJPH.2021. 306209.
DOI: https://doi.org/10.2105/AJPH.2021.306209
View in Google Scholar
Nagy, B., Gabor, M. R., & Bacoș, I. B. (2022). Google mobility data as a predictor for tourism in Romania during the COVID-19 pandemic—A structural equa-tion modeling approach for big data. Electronics, 11(15), 2317. doi: 10.3390/electro nics11152317.
DOI: https://doi.org/10.3390/electronics11152317
View in Google Scholar
Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., De Nadai, M., Letouze, E., Ali Salah, A., Benjamins, R., Cattuto, C., Colizza, V., Cordes, N., Fraiberger, S. P., Koebe, T., Lehmann, S., Murillo, J., Pentland, A., Pham, P. N., Pivetta, F., Saramaki, J., Scarpino, S. V., Tizzoni, M., Verhulst, S., & Vinck, P. (2020). Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Science Advances, 6(23), eabc0764. doi: 10.1126/sciadv.abc0764.
DOI: https://doi.org/10.1126/sciadv.abc0764
View in Google Scholar
Pupion, G., & Pupion, P.C. (1998). Non - parametricla tests with economics applications and administration. Paris: Economica.
View in Google Scholar
Saha, J., Mondal, S., & Chouhan, P. (2021). Spatial-temporal variations in commu-nity mobility during lockdown, unlock, and the second wave of COVID-19 in India: A data-based analysis using Google's community mobility reports. Spa-tial and Spatio-temporal Epidemiology, 39, 100442. doi: 10.1016/j.sste.2021.100442.
DOI: https://doi.org/10.1016/j.sste.2021.100442
View in Google Scholar
Saporta, G. (1990). Data probabilistic analysis and statistics. Paris: Technip.
View in Google Scholar
Shortall, R., Mouter, N., & Van Wee, B. (2022). COVID-19 passenger transport measures and their impacts. Transport Reviews, 42(4), 441–466. doi: 10.1080/01441 647.2021.1976307.
DOI: https://doi.org/10.1080/01441647.2021.1976307
View in Google Scholar
Sulyok, M., & Walker, M. D. (2021). Mobility and COVID-19 mortality across Scandinavia: A modeling study. Travel Medicine and Infectious Disease, 41, 102039. doi: 10.1016/j.tmaid.2021.102039.
DOI: https://doi.org/10.1016/j.tmaid.2021.102039
View in Google Scholar
Szász, L., Bálint, C., Csíki, O., Nagy, B. Z., Rácz, B. G., Csala, D., & Harris, L. C. (2022). The impact of COVID-19 on the evolution of online retail: The pandem-ic as a window of opportunity. Journal of Retailing and Consumer Services, 69, 103089. doi: 10.1016/j.jretconser.2022.103089.
DOI: https://doi.org/10.1016/j.jretconser.2022.103089
View in Google Scholar
Tamagusko, T., & Ferreira, A. (2020). Data-driven approach to understand the mobility patterns of the Portuguese population during the COVID-19 pandem-ic. Sustainability, 12(22), 9775. doi: 10.3390/su12229775.
DOI: https://doi.org/10.3390/su12229775
View in Google Scholar
Tizzoni, M., Bajardi, P., Decuyper, A., Kon Kam King, G., Schneider, C. M., Blondel, V., Smoreda, Z., González, M. C., & Colizza, V. (2014). On the use of human mobility proxies for modeling epidemics. PLoS Computational Biology, 10(7), e1003716. doi: 10.1371/journal.pcbi.1003716.
DOI: https://doi.org/10.1371/journal.pcbi.1003716
View in Google Scholar
Vendrine, J. P. (1991). Data processing in marketing - in 10 questions, 13 applications, 27 examples and commented exercises. Paris: Les Éditions d’Organisation.
View in Google Scholar
Wang, S., Tong, Y., Fan, Y., Liu, H., Wu, J., Wang, Z., & Fang, C. (2021). Observ-ing the silent world under COVID-19 with a comprehensive impact analysis based on human mobility. Scientific Reports, 11(1), 14691. doi: 10.1038/s41598-021-940 60-4.
DOI: https://doi.org/10.1038/s41598-021-94060-4
View in Google Scholar
Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., Snow, R. W., & Buckee, C. O. (2012). Quantifying the impact of human mobility on malaria. Science, 338(6104), 267–270. doi: 10.1126/science.1223467.
DOI: https://doi.org/10.1126/science.1223467
View in Google Scholar
Wesolowski, A., Qureshi, T., Boni, M. F., Sundsøy, P. R., Johansson, M. A., Rasheed, S. B., Engø-Monsen, K., & Buckee, C. O. (2015). Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of Sciences, 112(38), 11887–11892. doi: 10.1073/pnas.1504964112.
DOI: https://doi.org/10.1073/pnas.1504964112
View in Google Scholar
World Tourism Organization (2022). Tourism Data Dashboard - International Tourism and Covid-19. Retrieved form https://www.unwto.org/tourism-data/unwto-tourism-dashboard (27.02.2022).
View in Google Scholar
Yang, A., Yang, J., Yang, D., Xu, R., He, Y., Aragon, A., & Qiu, H. (2021a). Human mobility to parks under the COVID‐19 pandemic and wildfire seasons in the Western and Central United States. GeoHealth, 5(12), e2021GH000494. doi: 10.102 9/2021GH000494.
DOI: https://doi.org/10.1029/2021GH000494
View in Google Scholar
Yang, Y., Zhang, C. X., & Rickly, J. M. (2021b). A review of early COVID-19 re-search in tourism: Launching the annals of tourism research's curated collec-tion on coronavirus and tourism. Annals of Tourism Research, 91, 103313. doi: 10.1016/j. annals.2021.103313.
DOI: https://doi.org/10.1016/j.annals.2021.103313
View in Google Scholar