State-level Taylor rule and monetary policy stress
DOI:
https://doi.org/10.24136/eq.2023.003Keywords:
Taylor Rule, states, monetary stress, spatial panel regression, FMOLS, DOLSAbstract
Research background: Taylor rule is a widely adopted approach to follow monetary policy and investigate various mechanisms related to or triggered by monetary policy. To date, no in-depth examination of scale, determinants and spillovers of state-level monetary policy stress, stemming from the Federal Reserve Board?s (Fed?s) policy has been performed.
Purpose of the article: This paper aims to investigate the nature of monetary policy stress on US States delivered by the single monetary policy by using a quarterly dataset spanning the years between 1989 and 2017.
Methods: We apply a wide array of time series and panel regressions, such as unit root tests, co-integration tests, co-integrating FMOLS and DOLS regressions, and Spatial Panel SAR and SEM models.
Findings & value added: When average stress imposed on states is calculated, it is observed that the level of stress is moderate, but the distribution across states is asymmetric. The cross-state determinants behind the average stress show that states with a higher percentage of working-age and highly educated population, as well as those with higher population density and more export-oriented are negatively stressed (i.e. they experience excessively low interest rates), whereas higher unemployment rate contributes to a positive stress (too high interest rates). To the best of our knowledge, the contribution of this paper lies in estimating monetary policy stress at the state level and unveiling some of the determinants of this stress. Moreover, the paper makes the first attempt to empirically test spatial spillovers of the stress, which are indeed found significant and negative.
Downloads
References
Aastveit, K. A., & Anundsen, A. K. (2022). Asymmetric effects of monetary policy in regional housing markets. American Economic Journal: Macroeconomics, 14(4), 499?529. doi: 10.1257/mac.20190011. DOI: https://doi.org/10.1257/mac.20190011
View in Google Scholar
Aguiar-Conraria, L., Martins, M. M., & Soares, M. J. (2018). Estimating the Taylor rule in the time-frequency domain. Journal of Macroeconomics, 57, 122?137. doi: 10.1016/j.jmacro.2018.05.008. DOI: https://doi.org/10.1016/j.jmacro.2018.05.008
View in Google Scholar
Akaike, H. (1973). Information theory and an extension of the maximum likeli-hood principle. In B. N. Petrov & F. Csáki (Eds.). 2nd international symposium on information theory, Tsahkadsor, Armenia, USSR, September 2-8, 1971 (pp. 267?281). Budapest: Akadémiai Kiadó. Republished in S. Kotz & N. L. Johnson (Eds.). (1992). Breakthroughs in statistics, vol. I (pp. 610?624). Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-0919-5_38
View in Google Scholar
Albuquerque, B. (2019). One size fits all? Monetary policy and asymmetric house-hold debt cycles in US states. Journal of Money, Credit and Banking, 51(5), 1309?1353. doi: 10.1111/jmcb.12547. DOI: https://doi.org/10.1111/jmcb.12547
View in Google Scholar
Albuquerque, P. C., Caiado, J., & Pereira, A. (2020). Population aging and infla-tion: Evidence from panel cointegration. Journal of Applied Economics, 23(1), 469?484. doi: 10.1080/15140326.2020.1795518. DOI: https://doi.org/10.1080/15140326.2020.1795518
View in Google Scholar
Almgren, M., Gallegos, J. E., Kramer, J., & Lima, R. (2022). Monetary policy and liquidity constraints: Evidence from the euro area. American Economic Journal: Macroeconomics, 14(4), 309?340. doi: 10.1257/mac.20200096. DOI: https://doi.org/10.1257/mac.20200096
View in Google Scholar
Anselin, L. (1980). Estimation methods for spatial autoregressive structures. Regional science dissertation and monograph series #8. Ithaca: Cornell University.
View in Google Scholar
Anselin, L., & Bera, A. K. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In A. Ullah & D. Giles (Eds.). Handbook of applied economic statistics (pp. 237?289). New York: CRC Press Taylor & Francis Group.
View in Google Scholar
Anselin, L., & Moreno, R. (2003). Properties of tests for spatial error components. Regional Science and Urban Economics, 33(5), 595?618. doi: 10.1016/S0166-0462 (03)00008-5. DOI: https://doi.org/10.1016/S0166-0462(03)00008-5
View in Google Scholar
Anselin, L., & Rey, S. (1991). Properties of tests for spatial dependence in linear regression models. Geographical Analysis, 23(2), 112?131. doi: 10.1111/j.1538-4632.1991.tb00228.x. DOI: https://doi.org/10.1111/j.1538-4632.1991.tb00228.x
View in Google Scholar
Anselin, L., Bera, A. K., Florax, R., & Yoon, J. M. (1996). Simple diagnostic tests for spatial dependence. Regional Science and Urban Economics, 26(1), 77?104. doi: 10.1016/0166-0462(95)02111-6. DOI: https://doi.org/10.1016/0166-0462(95)02111-6
View in Google Scholar
Avdijev, S., & Hale, G. (2019). U.S. monetary policy and fluctuations of interna-tional bank lending. Journal of International Money and Finance, 95, 251?268. doi: 10.1016/j.jimonfin.2018.06.013. DOI: https://doi.org/10.1016/j.jimonfin.2018.06.013
View in Google Scholar
Bakhit, W., & Bakhit, S. (2014). Banks' stability: The effect of monetary policies in the light of global financial crisis. International Journal of Finance & Banking Studies, 3(2), 60?80. doi: 10.20525/ijfbs.v3i2.184. DOI: https://doi.org/10.20525/ijfbs.v3i2.184
View in Google Scholar
Baltagi, B. H., Song, S. H., & Koh, W. (2003). Testing panel data regression models with spatial error correlation. Journal of Econometrics, 117(1), 123?150. doi: 10.1016/S0304-4076(03)00120-9. DOI: https://doi.org/10.1016/S0304-4076(03)00120-9
View in Google Scholar
Baltagi, B. H. (2013). Econometric analysis of panel data. Wiley. DOI: https://doi.org/10.1002/9781118445112.stat03160
View in Google Scholar
Baltagi, B. H., Feng, Q., & Kao, C. (2012). A Lagrange multiplier test for cross-sectional dependence in a fixed effects panel data model. Journal of the Econometrics, 170(1), 164?177. doi: 10.1016/j.jeconom.2012.04.004. DOI: https://doi.org/10.1016/j.jeconom.2012.04.004
View in Google Scholar
Baltagi, B. H., Song, S. H., Yung, B. C., & Koh, W. (2007). Testing for serial correla-tion, spatial autocorrelation and random effects using panel data. Journal of Econometrics, 140(1), 5?51. doi: 10.1016/j.jeconom.2006.09.001. DOI: https://doi.org/10.1016/j.jeconom.2006.09.001
View in Google Scholar
Bauer, M. D., & Rudebusch, G. D. (2020). Interest rates under falling stars. American Economic Review, 110(5), 1316?1354. doi: 10.1257/aer.20171822. DOI: https://doi.org/10.1257/aer.20171822
View in Google Scholar
Baxter, M., & King, R. G. (1999). Measuring business cycles: approximate Band-Pass filters for economic time series. Review of Economics and Statistics, 81(4), 575?593. doi: 10.1162/003465399558454. DOI: https://doi.org/10.1162/003465399558454
View in Google Scholar
Beck, G. W., Hubrich, K., Marcellino, M., & Klaus, A. (2009). Regional inflation dynamics within and across euro area countries and comparison with the US. Economic Policy, 24(57), 141?184. doi: 10.1111/j.1468-0327.2009.00214.x. DOI: https://doi.org/10.1111/j.1468-0327.2009.00214.x
View in Google Scholar
Beckworth, D. (2010). One nation under the Fed? The asymmetric effect of US monetary policy and its implications for the United States as an optimal cur-rency area. Journal of Macroeconomics, 32(3), 732?746. doi: 10.1016/j.jmacro.2009.12.001. DOI: https://doi.org/10.1016/j.jmacro.2009.12.001
View in Google Scholar
Bera, A. K., Do?an, O., Taşp?nar, S., & Leiluo, Y. (2019). Robust LM tests for spatial dynamic panel data models. Regional Science and Urban Economics, 76(C), 47?66. doi: 10.1016/j.regsciurbeco.2018.08.001. DOI: https://doi.org/10.1016/j.regsciurbeco.2018.08.001
View in Google Scholar
Beraja, M., Fuster, A., Hurst, E., & Vavra, J. (2019). Regional heterogeneity and the refinancing channel of monetary policy. Quarterly Journal of Economics, 134(1), 109?183. doi: 10.1093/qje/qjy021. DOI: https://doi.org/10.1093/qje/qjy021
View in Google Scholar
Bernanke, B. S., & Gertler, M. (1995). Inside the black box: The credit channel of monetary policy transmission. Journal of Economic Perspectives, 9(4), 27?48. doi: 10.1257/jep.9.4.27. DOI: https://doi.org/10.1257/jep.9.4.27
View in Google Scholar
Bernanke, B. S., Kiley, M. T., & Roberts, J. M. (2019). Monetary policy strategies for a low-rate environment. AEA Papers and Proceedings, 109, 421?26. doi: 10.1257/pan dp.20191082. DOI: https://doi.org/10.1257/pandp.20191082
View in Google Scholar
Bivand, R., Altman, M., Anselin, L., Assunç?o, R., Berke, O., Guillaume Blanchet, F., Carvalho, M., Christensen, B., Chun, Y., Dormann, C., Dray, S., Dunnington, D., Gómez-Rubio, V., Krainski, E., Legendre, P., Lewin-Koh, N., Li, A., Millo, G., Mueller, W., Ono, H., Parry, J., Peres-Neto, P., Piras, G., Reder, M., Sauer, J., Tiefelsdorf, M., Westerholt, R., Wolf, L., & Yu, D. (2022) ?R Spdep package?. Retrieved from https://cran.r-project.org/web/packages/spdep/spdep.pdf.
View in Google Scholar
Blanchard, O. (2007). A macroeconomic survey of Europe. MIT.
View in Google Scholar
Bobeica, E., Nickel, C., Lis, E., & Sun, Y. (2017). Demographics and inflation. ECB Working Paper, 2006.
View in Google Scholar
Buch, C. M., Eickmeier, S., & Prieto, E. (2022). Banking deregulation, macroeco-nomic dynamics and monetary policy. Journal of Financial Stability, 63, 101057. doi: 10.1016/j.jfs.2022.101057. DOI: https://doi.org/10.1016/j.jfs.2022.101057
View in Google Scholar
Burriel, P., & Galesi A. (2018). Uncovering the heterogeneous effects of ECB un-conventional monetary policies across Euro area countries. European Economic Review, 101(C), 210?229. doi: 10.1016/j.euroecorev.2017.10.007. DOI: https://doi.org/10.1016/j.euroecorev.2017.10.007
View in Google Scholar
Capasso, S., D'Uva, M., Fiorelli C., & Napolitano, O. (2021). Spatial asymmetries in monetary policy effectiveness in Italian regions. Spatial Economic Analysis, 16(1), 27?46. doi: 10.1080/17421772.2020.1673899. DOI: https://doi.org/10.1080/17421772.2020.1673899
View in Google Scholar
Caputo, R., & Diaz, A. (2018). Now and always, the relevance of the Taylor rule in Europe. International Journal of Finance & Economics, 23(1), 41?46. doi: 10.1002/ijfe .1601. DOI: https://doi.org/10.1002/ijfe.1601
View in Google Scholar
Carlino, G., & DeFina, R. (1998). The differential regional effects of monetary poli-cy. Review of Economics and Statistics, 80(4), 572?587. doi: 10.1162/003465398557843. DOI: https://doi.org/10.1162/003465398557843
View in Google Scholar
Carlino, G., & DeFina, R. (1999). The differential regional effects of monetary poli-cy: Evidence from the US states. Journal of Regional Science, 39(2), 339?358. doi: 10.1111/1467-9787.00137. DOI: https://doi.org/10.1111/1467-9787.00137
View in Google Scholar
Carvalho, C., Nechio, F., & Tristao, T. (2021). Taylor rule estimation by OLS. Jour-nal of Monetary Economics, 124(C), 140?154. doi: 10.1016/j.jmoneco.2021.10.010. DOI: https://doi.org/10.1016/j.jmoneco.2021.10.010
View in Google Scholar
Chang, F. S., Chen, S. S., Lin, T. Y., & Wang, P. Y. (2022). Presidents, Fed chairs, and the deviations from the Taylor rule. Macroeconomic Dynamics. Advance online publication. doi: 10.1017/S1365100522000402. DOI: https://doi.org/10.1017/S1365100522000402
View in Google Scholar
Chertman, F., Hutchison, M., & Zink, D. (2020). Facing the quadrilemma: Taylor rules, intervention policy and capital controls in large emerging markets. Journal of International Money and Finance, 102, 102122. doi: 10.1016/j.jimonfin.2019.102 122. DOI: https://doi.org/10.1016/j.jimonfin.2019.102122
View in Google Scholar
Chrysanthidou, E., Gogas, P., & Papadimitriou, T. (2013). Optimum currency areas within the US and Canada: a data analysis approach. Journal of Computational Optimization in Economics and Finance, 5(1), 41?50.
View in Google Scholar
Clarida, R., Gal??, J., & Gertler. M. (1998). Monetary policy rules in practice: Some international evidence. European Economic Review, 42(6), 1033?1067. doi: 10.1016/ S0014-2921(98)00016-6. DOI: https://doi.org/10.1016/S0014-2921(98)00016-6
View in Google Scholar
Cloyne, J., Ferreira, C., & Surico, P. (2020). Monetary policy when households have debt: New evidence on the transmission mechanism. Review of Economic Studies, 87(1), 102?129. doi: 10.1093/restud/rdy074. DOI: https://doi.org/10.1093/restud/rdy074
View in Google Scholar
Croissant, Y., & Millo, G. (2008). Panel data econometrics in R: The plm package. Journal of Statistical Software, 27(2), 1?43. DOI: https://doi.org/10.18637/jss.v027.i02
View in Google Scholar
Crone, T. M., & Clayton-Matthews. A. (2005). Consistent economic indexes for the 50 states. Review of Economics and Statistics, 87(4), 593?603. doi: 10.1162/00346530 5775098242. DOI: https://doi.org/10.1162/003465305775098242
View in Google Scholar
Crowley, P. M. (2001). The institutional implications of EMU. JCMS: Journal of Common Market Studies, 39(3), 385?404. doi: 10.1111/1468-5965.00295. DOI: https://doi.org/10.1111/1468-5965.00295
View in Google Scholar
Czudaj, R. L. (2021). Are the forecasts of professionals compatible with the Taylor Rule? Evidence from the Euro Area. Macroeconomic Dynamics. Advance online publication. doi: 10.1017/S1365100521000614. DOI: https://doi.org/10.1017/S1365100521000614
View in Google Scholar
Del Negro, M., Giannone, D., Giannoni, M. P., & Tambalotti, A. (2017). Safety, liquidity, and the natural rate of interest. Brookings Papers on Economic Activity, 2017(1), 235?316. doi: 10.1353/eca.2017.0003. DOI: https://doi.org/10.1353/eca.2017.0003
View in Google Scholar
Deskar-Škrbić, M., Kotarac, K., & Kunovac, D. (2020). The third round of euro area enlargement: Are the candidates ready? Journal of International Money and Finance, 107, 102205. doi: 10.1016/j.jimonfin.2020.102205. DOI: https://doi.org/10.1016/j.jimonfin.2020.102205
View in Google Scholar
Dominguez?Torres, H., & Hierro, L. A. (2019). The regional effects of monetary policy: A survey of the empirical literature. Journal of Economic Surveys, 33(2), 604?638. doi: 10.1111/joes.12288. DOI: https://doi.org/10.1111/joes.12288
View in Google Scholar
Drometer, M., Siemsen T., & Watzka, S. (2013). The monetary policy of the ECB: A Robin Hood approach? CESIFO Working Paper, 4178. DOI: https://doi.org/10.2139/ssrn.2244821
View in Google Scholar
Duran, H. E., & Erdem, U. (2014). Regional effects of monetary policy: Turkey case. Regional and Sectoral Economic Studies, 14(1), 133?146.
View in Google Scholar
Duran, H. E. (2013). Convergence of regional economic cycles in Turkey. Review of Urban and Regional Development Studies, 25(3), 152?175. doi: 10.1111/rurd.12015. DOI: https://doi.org/10.1111/rurd.12015
View in Google Scholar
Duran, H. E. (2015). Dynamics of business cycle synchronization in Turkey. Panoeconomicus, 62(5), 581?606. doi: 10.2298/PAN1505581D. DOI: https://doi.org/10.2298/PAN1505581D
View in Google Scholar
Duran,, H. E., & Fratesi, U. (2020). Employment volatility in lagging and advanced regions: The Italian case. Growth & Change, 51(1), 207?233. doi: 10.1111/grow. 12351. DOI: https://doi.org/10.1111/grow.12351
View in Google Scholar
Duran, H. E., & Karahasan, B. C. (2022). Heterogeneous responses to monetary policy regimes: A regional analysis for Turkey, 2009?2019. Regional Statistics, 12(4), 56?91. doi: 10.15196/RS120403. DOI: https://doi.org/10.15196/RS120403
View in Google Scholar
Elhorst, J. P. (2003). Specification and estimation of spatial panel data models. International Regional Sciences Review, 26(3), 244?268. doi: 10.1177/016001760325 3791. DOI: https://doi.org/10.1177/0160017603253791
View in Google Scholar
Elhorst, J. P. (2010). Spatial panel data models. In M. M, Fischer & A. Getis (Eds.). Handbook of applied spatial analysis, software tools, methods and applications (pp. 377?407). Springer-Verlag. DOI: https://doi.org/10.1007/978-3-642-03647-7_19
View in Google Scholar
Elhorst, J. P. (2014). Spatial econometrics, from cross-sectional data to spatial panels. Springer. doi: 10.1007/978-3-642-40340-8. DOI: https://doi.org/10.1007/978-3-642-40340-8
View in Google Scholar
Eviews 4 user?s guide. Retrieved from: https://www.researchgate.net/profile/Aham mad-Hossain-2/post/Is_there_any_evoews_code_for_MWALD_granger_causali ty_test_for_bivariate_VAR_model/attachment/59d6242b79197b8077982805/AS% 3A311580074414080%401451297887143/download/Users+Guide+4.0.pdf.
View in Google Scholar
Federal Reserve Bank of Philadelphia. Coincident economic activity index for the United States [USPHCI]. Federal Reserve Bank of St. Louis. Retrieved from https://fred.stlouisFed.org/series/USPHCI (1.01.2022). DOI: https://doi.org/10.24148/wp2022-14
View in Google Scholar
Friedman, M. (1972). Have monetary policies failed? American Economic Review 62(2), 11?18.
View in Google Scholar
Furceri, D., Mazzola, F., & Pizzuto, P. (2019), Asymmetric effects of monetary poli-cy shocks across US states. Papers in Regional Science, 98(5), 1861?1891. doi: 10.1111/ pirs.12460. DOI: https://doi.org/10.1111/pirs.12460
View in Google Scholar
Gajewski, P. (2016). Monetary policy stress in EMU: What role for fundamentals and missed forecasts? Emerging Markets Finance and Trade, 52(5), 1226?1240. doi: 10.1080/1540496X.2015.1037204. DOI: https://doi.org/10.1080/1540496X.2015.1037204
View in Google Scholar
Gerlach, S., & Schnabel, G. (2000). The Taylor rule and interest rates in the EMU area. Economic Letters, 67(2), 165?171. doi: 10.1016/S0165-1765(99)00263-3. DOI: https://doi.org/10.1016/S0165-1765(99)00263-3
View in Google Scholar
Gertler, M., & Gilchrist, S. (1993). The role of credit market imperfections in the monetary transmission mechanism: Arguments and evidence. Scandinavian Journal of Economics, 95(1), 43?64. doi: 10.2307/3440134. DOI: https://doi.org/10.2307/3440134
View in Google Scholar
Grandi, P. (2019). Sovereign risk and cross-country heterogeneity in the transmis-sion of monetary policy to bank lending in the euro area. European Economic Review, 119, 251?273. doi: 10.2139/ssrn.3245321. DOI: https://doi.org/10.1016/j.euroecorev.2019.07.011
View in Google Scholar
Haining, R. P. (2003). Spatial data analysis, theory and practice. University of Cam-bridge Press. DOI: https://doi.org/10.1017/CBO9780511754944
View in Google Scholar
Hausman, J. (1978). Specification tests in econometrics. Econometrica, 1978, 46(6), 1251?1271. doi: 10.2307/1913827. DOI: https://doi.org/10.2307/1913827
View in Google Scholar
Hazell, J., Herreno J., Nakamura, E.z, & Steinsson J. (2020). The slope of the Phil-lips curve: Evidence from U.S. States. NBER Working Paper Series, 28005. doi: 10.3386/w28005. DOI: https://doi.org/10.2139/ssrn.3718917
View in Google Scholar
Hodrick, R. J., & Prescott. E.C. (1997). Postwar U.S. business cycles: An empirical investigation. Journal of Money, Credit and Banking, 29(1), 1?16. doi: 10.2307/295 3682. DOI: https://doi.org/10.2307/2953682
View in Google Scholar
Hofmann, B., & Bogdanova, B. (2012). Taylor rules and monetary policy: A global ?Great Deviation?? BIS Quarterly Review, September, 37?49.
View in Google Scholar
Höpner, M., & Lutter, M. (2018). The diversity of wage regimes: why the eurozone is too heterogeneous for the Euro. European Political Science Review, 10(1), 71?96. doi: 10.1017/S1755773916000217. DOI: https://doi.org/10.1017/S1755773916000217
View in Google Scholar
Imam, P. (2015). Shock from graying: Is the demographic shift weakening mone-tary policy effectiveness? International Journal of Finance and Economics, 20, 138?154. doi: 10.1002/ijfe.1505. DOI: https://doi.org/10.1002/ijfe.1505
View in Google Scholar
Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica, 59(6), 1551?1580. doi: 10.2307/2938278. DOI: https://doi.org/10.2307/2938278
View in Google Scholar
Johansen, S. (1995). Likelihood-based inference in cointegrated vector autoregressive mod-els. Oxford: Oxford University Press. DOI: https://doi.org/10.1093/0198774508.001.0001
View in Google Scholar
Jory, S. R., Mishra, T., & Ngo, T. N. (2019) Location-specific stock market indices: An exploration. European Journal of Finance, 25(4), 305?337. doi: 10.1080/135184 7X.2018.1515095. DOI: https://doi.org/10.1080/1351847X.2018.1515095
View in Google Scholar
Kao, S. Y. H., & Bera, A. K. (2016). Spatial regression: The curious case of negative spatial dependence. Urbana-Champaign: University of Illinois.
View in Google Scholar
Kashyap, A. K., & Stein J. C. (2000). What do a million observations on banks say about the transmission of monetary policy? American Economic Review, 90(3), 407?428. doi: 10.1257/aer.90.3.407. DOI: https://doi.org/10.1257/aer.90.3.407
View in Google Scholar
Kouparitsas, M. (2001). Is the United States an optimal currency area? An empiri-cal analysis of regional business cycles. Federal Reserve Bank of Chicago Working Paper, 22. DOI: https://doi.org/10.2139/ssrn.295566
View in Google Scholar
Krugman, P. R. (1991). Increasing returns and economic geography. Journal of Political Economy, 99(3), 483?499. doi: 10.1086/261763. DOI: https://doi.org/10.1086/261763
View in Google Scholar
Laubach, T., & Williams, J. C. (2003). Measuring the natural rate of interest. Review of Economics and Statistics, 85(4), 1063?1070. DOI: https://doi.org/10.1162/003465303772815934
View in Google Scholar
Magrini, S., Gerolimetto, M., & Duran H. E. (2013). Business cycle dynamics across the US states. B.E. Journal of Macroeconomics, 13(1), 795?822. doi: 10.1515/bejm-2012-0018. DOI: https://doi.org/10.1515/bejm-2012-0018
View in Google Scholar
Malkin, I., & Nechio, F. (2012). U.S. and Euro-area monetary policy by regions. FRBSF Economic Letter, 2012-06, 1?4.
View in Google Scholar
Mandler, M., Scharnagl, M., & Volz, U. (2022). Heterogeneity in Euro area mone-tary policy transmission: Results from a large multicountry BVAR model. Journal of Money, Credit and Banking, 54(2-3), 627?649. doi: 10.1111/jmcb.12859. DOI: https://doi.org/10.1111/jmcb.12859
View in Google Scholar
Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. Review of Economic Studies, 60(3), 531?542. doi: 10.1111/joes.12078. DOI: https://doi.org/10.2307/2298123
View in Google Scholar
Millo, G., Piras, G., & Bivand R. (2022) ?R SPLM package?. Retrieved from https://cran.r-project. org/web/packages/splm/splm.pdf.
View in Google Scholar
Millo, G., & Piras, G. (2012). Splm: Spatial panel data models in R. Journal of Statistical Software, 47, 1?38. DOI: https://doi.org/10.18637/jss.v047.i01
View in Google Scholar
Mishkin, F. S. (1996). The channels of monetary transmission: Lessons for mone-tary policy. NBER Working Paper, 5464. doi: 10.3386/W5464. DOI: https://doi.org/10.3386/w5464
View in Google Scholar
Montoya, L. A., & De Haan, J. (2008). Regional business cycle synchronization in Europe? International Economics and Economic Policy, 5(1), 123?137. doi: 10.1007/s 10368-008-0106-z. DOI: https://doi.org/10.1007/s10368-008-0106-z
View in Google Scholar
Mundell, R. A. (1961). A theory of optimum currency areas. American Economic Review, 51(4), 657?665.
View in Google Scholar
Mutl, J., & Pfaffermayr, M. (2011). The Hausman test in a Cliff and Ord panel mod-el. Econometrics Journal, 14(1), 48?76. doi: 10.1111/j.1368-423X.2010.00325.x. DOI: https://doi.org/10.1111/j.1368-423X.2010.00325.x
View in Google Scholar
Neto, J. J., Claeyssen, J. C. R., & Júnior, S. P. (2019). Returns to scale in a spatial Solow?Swan economic growth model. Physica A: Statistical Mechanics and its Applications, 533, 122055. doi: 10.1016/j.physa.2019.122055. DOI: https://doi.org/10.1016/j.physa.2019.122055
View in Google Scholar
Newey, W. K., & West K. D. (1987a). Hypothesis testing with efficient method of moments estimation. International Economic Review, 28(3), 777?787. doi: 10.2307 /2526578. DOI: https://doi.org/10.2307/2526578
View in Google Scholar
Newey, W. K., & West, K. D. (1987b). A simple positive semi-definite, heteroske-dasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3), 703?708. doi: 10.2307/1913610. DOI: https://doi.org/10.2307/1913610
View in Google Scholar
Oliner, S. D., & Rudebusch, G. D. (1996). Is there a broad credit channel for mone-tary policy? FRBSF Economic Review, 1, 3?13.
View in Google Scholar
Orphanides, A. (2003). Historical monetary policy analysis and the Taylor rule. Journal of Monetary Economics, 50(5), 983?1022. doi: 10.1016/S0304-3932(03)00065-5. DOI: https://doi.org/10.1016/S0304-3932(03)00065-5
View in Google Scholar
Orphanides, A. (2007). Taylor rule. Washington, D.C: Finance and Economics Dis-cussion Series. Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board.
View in Google Scholar
Owyang, M. T., & Wall, H. J. (2009). Regional VARs and the channels of monetary policy. Applied Economics Letters, 16(12), 1191?1194. doi: 10.1080/13504850701367 247. DOI: https://doi.org/10.1080/13504850701367247
View in Google Scholar
Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regres-sion. Biometrika, 75(2), 335?346. doi: 10.1093/biomet/75.2.335. DOI: https://doi.org/10.1093/biomet/75.2.335
View in Google Scholar
Phillips, P. C. B., & Hansen, B. E. (1990). Statistical inference in instrumental varia-bles regression with I(1) processes. Review of Economics Studies, 57(1), 99?125. DOI: https://doi.org/10.2307/2297545
View in Google Scholar
Pizzuto, P. (2020). Regional effects of monetary policy in the US: An empirical re-assessment. Economics Letters, 190, 109062. doi: 10.1016/j.econlet.2020.109062. DOI: https://doi.org/10.1016/j.econlet.2020.109062
View in Google Scholar
Roberts, J. M. (1995). New Keynesian economics and the Phillips Curve. Journal of Money, Credit and Banking, 27(4), 975?984. doi: 10.2307/2077783. DOI: https://doi.org/10.2307/2077783
View in Google Scholar
Rusnák, M., Havranek, T., & Horváth, R. (2013). How to solve the price puzzle? A meta?analysis. Journal of Money, Credit and Banking, 45(1), 37?70. doi: 10.1111/j.15 38-4616.2012.00561.x. DOI: https://doi.org/10.1111/j.1538-4616.2012.00561.x
View in Google Scholar
Saidi, K. (2018). Foreign direct investment, financial development and their im-pact on the GDP growth in low-income countries. International Economic Journal, 32(3), 483?497. doi: 10.1080/10168737.2018.1529813. DOI: https://doi.org/10.1080/10168737.2018.1529813
View in Google Scholar
Saikkonen, P. (1992). Estimation and testing of cointegrated systems by an auto-regressive approximation. Econometric Theory, 8, 1?27. doi: 10.1017/S0266466600 010720. DOI: https://doi.org/10.1017/S0266466600010720
View in Google Scholar
Santos, A., Edwards, J., & Neto, P. (2022). Does smart specialisation improve any innovation subsidy effect on regional productivity? The Portuguese case. European Planning Studies. Advance online publication. doi: 10.1080/09654313 .2022.2073787. DOI: https://doi.org/10.1080/09654313.2022.2073787
View in Google Scholar
Schwarz, G. E. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2): 461?464. doi: 10.1214/aos/1176344136. DOI: https://doi.org/10.1214/aos/1176344136
View in Google Scholar
Stock, J. H., & Watson, W. M. (1993). A simple estimator of cointegrating vectors in higher order integrated systems. Econometrica, 61(4), 783?820. doi: 10.2307/29517 63. DOI: https://doi.org/10.2307/2951763
View in Google Scholar
Syed, S. A. S. (2021). Heterogeneous consumers in the Euro-Area, facing homoge-neous monetary policy: Tale of two large economies. Journal of Economic Asymmetries, 24, e00214. doi: 10.1016/j.jeca.2021.e00214. DOI: https://doi.org/10.1016/j.jeca.2021.e00214
View in Google Scholar
Taylor, J. B. (1993). Discretion versus policy rules in practice. Carnegie-Rochester Conference Series on Public Policy, 39, 195?214. DOI: https://doi.org/10.1016/0167-2231(93)90009-L
View in Google Scholar
Taylor, J. B. (1999). A historical analysis of monetary policy rules. In Monetary policy rules (pp. 319?348). University of Chicago Press. DOI: https://doi.org/10.7208/chicago/9780226791265.001.0001
View in Google Scholar
Taylor, J. B. (1995). The monetary transmission mechanism: an empirical frame-work. Journal of Economic Perspectives, 9(4), 11?26. doi: 10.1016/0167-2231(93)90 009-L. DOI: https://doi.org/10.1257/jep.9.4.11
View in Google Scholar
Taylor, J. B. (2002). The monetary transmission mechanism and the evaluation of monetary policy rules. In N. Loayza, K. Schmidt-Hebbel & N. Loayza (Eds.). Monetary policy: rules and transmission mechanisms (pp. 21?46). Santiago: Central Bank of Chile.
View in Google Scholar
Weyerstrass, K., van Aarle, B, Kappler M., & Seymen, A. (2011). Business cycle synchronisation with(in) the Euro area: In search of a ?Euro effect.? Open Economies Review, 22, 427?446. doi: 10.1007/s11079-009-9131-y. DOI: https://doi.org/10.1007/s11079-009-9131-y
View in Google Scholar
Woodford, M. (2000). Pitfalls of forward-looking monetary policy. American Economic Review, 90(2), 100?104. doi: 10.1257/aer.90.2.100. DOI: https://doi.org/10.1257/aer.90.2.100
View in Google Scholar
Ya?c?baş?, Ö. F., & Y?ld?r?m, M. O. (2019). Estimating Taylor rules with Markov switching regimes for Turkey. Romanian Journal of Economic Forecasting, 22(3), 81?95.
View in Google Scholar
Electronic data sources:
View in Google Scholar
https://fred.stlouisFed.org
View in Google Scholar
https://sites.google.com/view/jadhazell/state-consumer-price-index
View in Google Scholar
https://stats.oecd.org/
View in Google Scholar
https://www.bea.gov/
View in Google Scholar
https://www.census.gov/
View in Google Scholar
https://www.datawrapper.de/
View in Google Scholar
https://www.fdic.gov/
View in Google Scholar
https://www.newyorkFed.org/research/policy/rstar
View in Google Scholar